Answer:
We are 95% confident that the true proportion of TV audience is between 65.15% and 65.85%
Step-by-step explanation:
-From the given information,
.
-We calculate the confidence interval using this value at 95% confidence level:
![CI=\hat p\pm z \sqrt{\frac{\hat p(1-\hat p)}{n}}\\\\\\=0.65\pm 1.96\times \sqrt{\frac{0.65\times 0.35}{12000}}\\\\\\=0.65\pm 0.0085\\\\\\=[0.6415,0.6585]](https://tex.z-dn.net/?f=CI%3D%5Chat%20p%5Cpm%20z%20%5Csqrt%7B%5Cfrac%7B%5Chat%20p%281-%5Chat%20p%29%7D%7Bn%7D%7D%5C%5C%5C%5C%5C%5C%3D0.65%5Cpm%201.96%5Ctimes%20%5Csqrt%7B%5Cfrac%7B0.65%5Ctimes%200.35%7D%7B12000%7D%7D%5C%5C%5C%5C%5C%5C%3D0.65%5Cpm%200.0085%5C%5C%5C%5C%5C%5C%3D%5B0.6415%2C0.6585%5D)
So, the 95% confidence interval is (0.6515,0.6585).
Hence, we are 95% confident that the true proportion of TV audience is between 65.15% and 65.85%.
0<r<6
the least number of ride he can go on is 0 which is none and the most is 6 because 15/2.50=6
Answer:
The answer is 6z-28
Step-by-step explanation:
20 - 3[4(z+1) - 6(z-2)]
= 20 - 3(4z+4-6z+12)
= 20 - 3(16 - 2z)
= 20 - 48 + 6z
= 6z - 28
The ratio of the area of the <u>first figure</u> to the area of the <u>second figure</u> is 4:1
<h3>Ratio of the areas of similar figures </h3>
From the question, we are to determine the ratio of the area of the<u> first figure</u> to the area of the <u>second figure</u>
<u />
The two figures are similar
From one of the theorems for similar polygons, we have that
If the scale factor of the sides of <u>two similar polygons</u> is m/n then the ratio of the areas is (m/n)²
Let the base length of the first figure be ,m = 14 mm
and the base length of the second figure be, n = 7 mm
∴ The ratio of their areas will be



= 4:1
Hence, the ratio of the area of the <u>first figure</u> to the area of the <u>second figure</u> is 4:1
Learn more on Ratio of the areas of similar figures here: brainly.com/question/11920446
Answer:
False
Step-by-step explanation:
A composite figure would be any irregular shapes and can be made up of multiple shapes