Answer/Step-by-sep explanation:
1. Given:
∆NMK ≅ ∆TRP




a. To complete the congruent statement, thus: ∆MNK ≅ ∆RTP
b. The side that is congruent to
is
. Thus:
≅ 
c. Since
≅
, therefore:

(substitution)
Add 1 to both sides


Divide both sides by 3


2. a. Slope of LK = 
Slope of LM = 
b. ✍️Length of LK is the distance between L(-7, 4) and (-4, 8):






✍️Length of LM is the distance between L(-7, 4) and (-2, 1):





(nearest tenth)
∆KLM is not an isosceles ∆ because it does not has two equal side lengths. This we can see because LK and LM are not equal.
Therefore, Anthony is incorrect. Am isosceles ∆ has two equal sides.
Answer:
14w
Step-by-step explanation:
Width = w
Length is 6 time its width. so, multiply w by 6
length = 6*w = 6w
Perimeter of rectangle = 2* (length + width)
= 2*(6w + w)
= 2*7w
= 14w
Answer:
83.5
Step-by-step explanation:

Answer:
Surface area is found:
Surface Area = 1700 cm²
Step-by-step explanation:
(The cereal box is shown in the ATTACHMENT)
The surface area of a rectangular prism can be found by added the areas of all 6 sides of the rectangular prism.
L = length = 20 cm
H = height = 30 cm
W = Width = 5 cm
<h3 /><h3>Side 1:</h3>
A(1) = L×H
A(1) = 20×30
A(1) = 600 cm²
<h3>Side 2:</h3>
As the measurements of the side at the back of side 1 has the same measurement of side 1. then:
A(2) = 600 cm²
<h3>Side 3:</h3>
A(3) = L×W
A(3) = 20×5
A(3) = 100 cm²
<h3>Side 4:</h3>
As the measurements of the side at the back of side 4 has the same measurement of side 4. then:
A(4) = 100 cm²
<h3>Side 5:</h3>
A(5) = H×W
A(5) = 30×5
A(5) = 150 cm²
<h3>Side 6:</h3>
As the measurements of the side at the back of side 5 has the same measurement of side 5. then:
A(6) = 150 cm²
<h3>Surface Area:</h3>
Adding areas of all the sides
A(1) + A(2) + A(3) +A(4) + A(5) + A(6) = 600 + 600 + 100 +100 + 150 +150
Surface Area = 1700 cm²
Answer: Choice C) 124 square cm
------------------------------------------------------------------
Explanation:
Let's calculate the area of the trapezoid shown
b1 and b2 are the parallel bases; h is the height of the 2D trapezoid
b1 = 2
b2 = 5
h = 1.5
A = h*(b1+b2)/2
A = 1.5*(2+5)/2
A = 1.5*7/2
A = 10.5/2
A = 5.25
The area of one 2D trapezoid is 5.25 sq cm
There are two of these trapezoids that form the base faces of the trapezoidal prism. So the total base area is 2*5.25 = 10.5 sq cm
Keep this value (10.5) in mind. We'll use it later.
------------
Now onto the lateral surface area (LSA)
It turns out that the formula for the LSA is
LSA = p*d
where
p = perimeter of the trapezoid shown
d = depth or height of the 3D trapezoid (I'm not using h as it was used earlier)
This formula works for any polygonal base. It doesn't have to be a trapezoid.
In this case the perimeter is,
p = 1.7+2+2.65+5
p = 11.35
So
LSA = p*d
LSA = 11.35*10
LSA = 113.5
Add this LSA to the base area found earlier
10.5+113.5 = 124
The total surface area is 124 square cm