Answer:
$25,193.17
Explanation:
Given:
• Principal Felipe borrowed, P=$8000
,
• Annual Interest Rate, r=16.5%=0.165
,
• Compounding Period, k=12 (Monthly)
,
• Time, t=7 years
We want to determine how much he will owe after 7 years.
In order to carry out this calculation, use the compound interest formula below:

Substitute the values defined above:

Finally, simplify and round to the nearest cent.

After 7 years, Felipe will owe $25,193.17.
Answer:
Consider f: N → N defined by f(0)=0 and f(n)=n-1 for all n>0.
Step-by-step explanation:
First we will prove that f is surjective. Let y∈N be any natural number. Define x as the number x=y+1. Then x∈N, and f(x)=x-1=(y+1)-1=y. We conclude that f is surjective.
However, f is not injective. Take x1=0 and x2=1. Then x1≠x2 but f(x1)=0 and f(x2)=x2-1=1-1=0. We have shown that there are two natural numbers x1,x2 such that x1≠x2 but f(x1)=f(x2), that is, f is not injective.
Note:
If 0∉N in your definition of natural numbers, the same reasoning works with the function f: N → N defined by f(1)=1 and f(n)=n-1 for all n>1. The only difference is that you consider x1=1, x2=2 for the injectivity.
Answer:
Ms. Gregg could buy 4 apples and 6 bananas
Step-by-step explanation:
You can split the money and try to get even on each fruit by, getting 4 apples which would be 8 dollars on 4 apples then the extra money would be left over for the bananas which would be six dollars and since the bananas are only 1 dollar you can buy 6 with the leftover money.
Answer:
Help me on my question please
Step-by-step explanation:
This question is a piece-o-cake if you know the formulas for the area and volume of a sphere, and impossible of you don't.
Area of a sphere = 4 π R² (just happens to be the area of 4 great circles)
Volume of a sphere = (4/3) π R³
We know the area of this sphere's great circle, so we can use the
first formula to find the sphere's radius. Then, once we know the
radius, we can use the second formula to find its volume.
Area of 4 great circles = 4 π R²
Area of ONE great circle = π R²
225 π cm² = π R²
R² = 225 cm²
R = √225cm² = 15 cm .
Now we have a number for R, so off we go to the formula for volume.
Volume = (4/3) π R³
= (4/3) π (15 cm)³
= (4/3) π (3,375 cm³)
= 14,137.17 cm³ (rounded)
This answer feels very good UNTIL you look at the choices.
_____________________________________________________
I've gone around several loops and twists trying to find out what gives here,
but have come up dry.
The only thing I found is the possibility of a misprint in the question:
If the area of a great circle is 225π cm², then the sphere's AREA is 900π cm².
I'm sure this is not the discrepancy. I'll leave my solution here, and hope
someone else can find why I'm so mismatched with the choices.