Answer:
ΔG° = 1022. 8 kJ
Explanation:
ΔH° = –199 kJ/mol
ΔS° = –4.1 J/K·mol
T = 25°C = 25 + 273 = 298K (Converting to kelvin temperature)
ΔG° = ?
The relationship between these varriables are;
ΔG° = ΔH° - TΔS°
ΔG° = –199 - 298 (–4.1)
ΔG° = -199 + 1221.8
ΔG° = 1022. 8 kJ
Answer: 8.3 J
Explanation:
We have the following measurement:

Rearranging the units:

Since 1 Newton is
:

Since 1 Joule is
:
This is the simplest form possible
Explanation:
303k -273k=30°c because 0°c is 273K
Answer:
The correct answer is 1.194 J/g.ºC
Explanation:
The heat released by the material is absorbed by the water. We put a minus sign (-) for a released heat and a plus sign (+) for an absorbed heat.
We know the mass of the material (mass mat= 25.0 g) and the mass of water (mass H20= 100.0 g) and the specific heat capacity of water is known (Shw=4.18 J/g.ºC), so we can equal the heat released by the material and the heat absorbed by water y calculate the specific heat capacity of the material (Shm) as follows:
heat released by material = heat absorbed by water
-(mass material x Shm x ΔT)= mass water x Shw x ΔT
-(25.0 g x Shm x (24ºC - 80ºC)= 100.0 g x 4.18 J/g.ºC x (24ºC-20ºC)
25.0 g x Shm x (56ºC) = 100.0 g x 4.18 J/g.ºC x 4ºC
⇒Shm= (100.0 g x 4.18 J/g.ºC x 4ºC)/(25.0 g x 56ºC)
Shm= 1.194 J/g.ºC
The car stopped due to a gravitational pull (gravity slowing it down) the energy is converted to kinetic energy and heat energy.