Carbon dioxide has a total of 16 valence electrons. 1. To determine the number of valence electrons of carbon dioxide (CO2), first determine the number of valence electrons of each of the elements in the molecule.
a. We have 1 carbon (C) molecule, and 2 oxygen (O) molecules.
b. The carbon molecule has 4 valence electrons and each oxygen molecule has 6 oxygen molecules.
2. Add up the valence electrons of each of the elements
4 + (2 x 6) = 16
(from C) (2 oxygen molecules, with 6 valence electrons each)
Thus, CO2 has a total of 16 valence electrons.
The number of valence electrons can be more clearly seen from the Lewis structure of the CO2 in the figure below (Source: http://chemistry.tutorvista.com/inorganic-chemistry/bonding-electrons.html). The the dots surrounding the letters represent the valence electrons.
Answer:
He provided a number of scientific insights that laid the foundation for future scientists. He also improved telescope that helped further the understanding of the world and universe.
Explanation:
The correct answer is BeCl_2(l)+2Cl^-(solvated)→BeCl_4^2-.
Evaluating be behavior to see :
how it differs from the other Group 2A (2) members.
In this reaction Be behaves like other alkaline earth metals
The complete equation can be given as
BeCl_2(l)+2Cl^-(solvated)→BeCl_4^2-
BeCl_2 tends to form a chloro bridged dimer in the vapour state, however at high temperatures of the order of 1200K, this dimer dissociates into the linear monomer.
BeCl_2 has a chain structure in its solid form. Each Be atom in this structure is surrounded by chlorine atoms, two of which are connected by conversion bonds and the remaining two by covalent coordinate connections. This chain structure is displayed.
To know more about BeCl₂(I) + Cl⁻ refer the link:
brainly.com/question/5017059
#SPJ4
I need the answer choices plz :)
The building with incandescent light bulbs would have higher energy bills because less than 10% of the bulb is used for light while the rest is given off as heat. Fluorescent light bulbs use ¼ as much energy and provide the same amount of light.