Answer:
a) t1 = v0/a0
b) t2 = v0/a0
c) v0^2/a0
Explanation:
A)
How much time does it take for the car to come to a full stop? Express your answer in terms of v0 and a0
Vf = 0
Vf = v0 - a0*t
0 = v0 - a0*t
a0*t = v0
t1 = v0/a0
B)
How much time does it take for the car to accelerate from the full stop to its original cruising speed? Express your answer in terms of v0 and a0.
at this point
U = 0
v0 = u + a0*t
v0 = 0 + a0*t
v0 = a0*t
t2 = v0/a0
C)
The train does not stop at the stoplight. How far behind the train is the car when the car reaches its original speed v0 again? Express the separation distance in terms of v0 and a0 . Your answer should be positive.
t1 = t2 = t
Distance covered by the train = v0 (2t) = 2v0t
and we know t = v0/a0
so distanced covered = 2v0 (v0/a0) = (2v0^2)/a0
now distance covered by car before coming to full stop
Vf2 = v0^2- 2a0s1
2a0s1 = v0^2
s1 = v0^2 / 2a0
After the full stop;
V0^2 = 2a0s2
s2 = v0^2/2a0
Snet = 2v0^2 /2a0 = v0^2/a0
Now the separation between train and car
= (2v0^2)/a0 - v0^2/a0
= v0^2/a0
Answer:
<em>The range is 35.35 m</em>
Explanation:
<u>Projectile Motion</u>
It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.
Being vo the initial speed of the object, θ the initial launch angle, and
the acceleration of gravity, then the maximum horizontal distance traveled by the object (also called Range) is:

The projectile was launched at an angle of θ=30° with an initial speed vo=20 m/s. Calculating the range:



The range is 35.35 m
Longitude- Horizontal (East West)
Latitude- Vertical (North South)
Atmosphere - gas
sea and oceans - liquid and solid
land -liquid and solid
living things and plants - liquid
Answer: C
Explanation:
Bro this is common sense. Throw something across the room and watch it. It isnt going to be repulsed and fly up. It also isnt going to continue on forever. It will clearly fall and hit the ground