Answer:
6.13 s
219 N
Explanation:
Newton's law in the x direction:
∑F = ma
150 cos 30° N − 50 N = (30 kg) a
a = 2.66 m/s²
Δx = v₀ t + ½ at²
(50 m) = (0 m/s) t + ½ (2.66 m/s²) t²
t = 6.13 s
Newton's law in the y direction:
∑F = ma
Fn + 150 sin 30° N − (30 kg) (9.8 m/s²) = 0
Fn = 219 N
We know that velocity is equal to the total displacement of an object over time.

Deriving from that equation, we can say that:

Okay, so here it goes:

The bicycle took 25.02 seconds to displace at 58.3 meters.
Answer:
101.54m/h
Explanation:
Given that the buses are 5mi apart, and that they are both driving at the same speed of 55m/h, rate of change of distance can be determined using differentiation as;
Let l be the be the distance further away at which they will meet from the current points;
#The speed toward each other.

Hence, the rate at which the distance between the buses is changing when they are 13mi apart is 101.54m/h
Answer:
Thin, aluminium and buried underground.
Explanation:
When it comes to electrification of a state or province, some characteristics of the wire to use must be considered. This would help to minimize and avoid power loss and wire burns.
i. The wire to use should be thin, and a quite number can be twisted one against the other so as to increase the surface area for heat dissipation.
ii. Aluminium wire is more preferable for this project. It has a high melting point, and reduces energy loss.
iii. Burying the wire underground through an insulator is the best choice, though expensive but would preserve the wire from external influence.