Answer:
B = 62.9 N
Explanation:
This is an exercise on Archimedes' principle, where the thrust force equals the weight of the liquid
B = ρ g V
write the equilibrium equation
T + B -W = 0
B = W- T (1)
use the density to write the weight
ρ = m / V
m = ρ V
W = ρ g V
substitute in 1
B = m g -T
B =
g V - T
To finish the calculation, the density of the material must be known, suppose it is steel \rho_{body} = 7850 kg / m³
calculate
B = 7850 9.8 1.20 10⁻³ - 29.4
B = 92.3 - 29.4
B = 62.9 N
Answer:
The answer is A good luck :P
Answer:
configuration of string:
Node - Antinode - Node or N-A-N
This is 1/2 wavelength since a full wavelength is N-A-N-A-N
f (fundamental) = V / wavelength
F0 = 300 m/s / 1 m = 100 / sec
F1 = 300 m/s / .5 m = 600 / sec
Each increase is a multiple of the fundamental since the wavelength
increases by 1/2 wavelength to keep nodes at both ends of the string
Answer:
C: Variation in the value of g as the pendulum bob moves along its arc.
Explanation:
The formula for period of a simple pendulum is given by;
T = 2π√(L/g)
Where;
L is length
g is acceleration due to gravity
Now, from this period equation, it is clear that the only thing that can affect the period of a simple pendulum are changes to its length and acceleration due to gravity.
Looking at the options, the only one that talks about either the length or gravity as being potential causes of the error is option C
Answer:
The correct option is (B).
Explanation:
The Kepler's third law of motion gives the relationship between the orbital time period and the distance from the semi major axis such that,

It is mentioned that, an asteroid with an orbital period of 8 years. So,

So, an asteroid with an orbital period of 8 years lies at an average distance from the Sun equal to 4 astronomical units.