Answer:
x =8
Step-by-step explanation:
To answer this question you must find the point at which ![g(x)\geq f(x)](https://tex.z-dn.net/?f=g%28x%29%5Cgeq%20f%28x%29)
So, we have:
![x^2 + 2x + 5 \geq 8x + 16](https://tex.z-dn.net/?f=x%5E2%20%2B%202x%20%2B%205%20%5Cgeq%208x%20%2B%2016)
![x^2 + 2x -8x + 5 -16\geq0\\\\x^2 -6x -11\geq 0](https://tex.z-dn.net/?f=x%5E2%20%2B%202x%20-8x%20%2B%205%20-16%5Cgeq0%5C%5C%5C%5Cx%5E2%20-6x%20-11%5Cgeq%200)
To solve the quadratic function we use the quadratic formula
±
![\frac{-b \± \sqrt{b^2- 4ac}}{2a}](https://tex.z-dn.net/?f=%5Cfrac%7B-b%20%5C%C2%B1%20%5Csqrt%7Bb%5E2-%204ac%7D%7D%7B2a%7D)
Where:
![a = 1\\b =-6\\c = -11](https://tex.z-dn.net/?f=a%20%3D%201%5C%5Cb%20%3D-6%5C%5Cc%20%3D%20-11)
Then:
![\frac{-(-6) \± \sqrt{(-6)^2- 4(1)(-11)}}{2(1)}\\\\x = 7.47\\x = -1.472](https://tex.z-dn.net/?f=%5Cfrac%7B-%28-6%29%20%5C%C2%B1%20%5Csqrt%7B%28-6%29%5E2-%204%281%29%28-11%29%7D%7D%7B2%281%29%7D%5C%5C%5C%5Cx%20%3D%207.47%5C%5Cx%20%3D%20-1.472)
The line cuts the parabola by 2 points, x = -1.472 and x = 7.47.
You can verify that between x = -1.472 and x = 7.47. the line is greater than the parabola, but from x = 7.47, the parabola is always greater than the graph of the line.
Therefore the point sought is:
x = 7.47≈ 8