Answer:
a. 85974 m²
b. 17,194,800 AED
c. 18,450 AED
Step-by-step explanation:
The sides of the quadrilateral are given as follows;
AB = 192 m
BC = 576 m
CD = 228 m
DA = 480 m
Length of a diagonal AC = 672 m
a. We note that the area of the quadrilateral consists of the area of the two triangles (ΔABC and ΔACD) formed on opposite sides of the diagonal
The semi-perimeter, s₁, of ΔABC is found as follows;
s₁ = (AB + BC + AC)/2 = (192 + 576 + 672)/2 = 1440/2 = 720
The area, A₁, of ΔABC is given as follows;
![Area\, of \, \Delta ABC = \sqrt{s_1\cdot (s_1 - AB)\cdot (s_1-BC)\cdot (s_1 - AC)}](https://tex.z-dn.net/?f=Area%5C%2C%20of%20%5C%2C%20%5CDelta%20ABC%20%3D%20%5Csqrt%7Bs_1%5Ccdot%20%28s_1%20-%20AB%29%5Ccdot%20%28s_1-BC%29%5Ccdot%20%28s_1%20-%20AC%29%7D)
![Area\, of \, \Delta ABC = \sqrt{720 \times (720 - 192)\times (720-576)\times (720 - 672)}](https://tex.z-dn.net/?f=Area%5C%2C%20of%20%5C%2C%20%5CDelta%20ABC%20%3D%20%5Csqrt%7B720%20%5Ctimes%20%28720%20-%20192%29%5Ctimes%20%20%28720-576%29%5Ctimes%20%20%28720%20-%20672%29%7D)
= 6912·√(55) m²
Similarly, area, A₂, of ΔACD is given as follows;
![Area\, of \, \Delta ACD= \sqrt{s_2\cdot (s_2 - AC)\cdot (s_2-CD)\cdot (s_2 - DA)}](https://tex.z-dn.net/?f=Area%5C%2C%20of%20%5C%2C%20%5CDelta%20ACD%3D%20%5Csqrt%7Bs_2%5Ccdot%20%28s_2%20-%20AC%29%5Ccdot%20%28s_2-CD%29%5Ccdot%20%28s_2%20-%20DA%29%7D)
The semi-perimeter, s₂, of ΔABC is found as follows;
s₂ = (AC + CD + D)/2 = (672 + 228 + 480)/2 = 690 m
We therefore have;
![Area\, of \, \Delta ACD = \sqrt{690 \times (690 - 672)\times (690 -228)\times (690 - 480)}](https://tex.z-dn.net/?f=Area%5C%2C%20of%20%5C%2C%20%5CDelta%20ACD%20%3D%20%5Csqrt%7B690%20%5Ctimes%20%28690%20-%20672%29%5Ctimes%20%20%28690%20-228%29%5Ctimes%20%20%28690%20-%20480%29%7D)
![Area\, of \, \Delta ACD = \sqrt{690 \times 18\times 462\times 210} = \sqrt{1204988400} = 1260\cdot \sqrt{759} \ m^2](https://tex.z-dn.net/?f=Area%5C%2C%20of%20%5C%2C%20%5CDelta%20ACD%20%3D%20%5Csqrt%7B690%20%5Ctimes%2018%5Ctimes%20%20462%5Ctimes%20%20210%7D%20%3D%20%5Csqrt%7B1204988400%7D%20%3D%201260%5Ccdot%20%5Csqrt%7B759%7D%20%5C%20m%5E2)
Therefore, the area of the quadrilateral ABCD = A₁ + A₂ = 6912×√(55) + 1260·√(759) = 85973.71 m² ≈ 85974 m² to the nearest meter square
b. Whereby the cost of 1 meter square land = 200 AED, we have;
Total cost of the land = 200 × 85974 = 17,194,800 AED
c. Whereby the cost of fencing 1 m = 12.50 AED, we have;
Total perimeter of the land = 576 + 192 + 480 + 228 = 1,476 m
The total cost of the fencing the land = 12.5 × 1476 = 18,450 AED