1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
3 years ago
11

Who showed that our universe is heliocentric—the planets of the solar system revolve around the sun? Johannes Kepler Isaac Newto

n Nicolaus Copernicus Galileo Galilei
Physics
1 answer:
denis23 [38]3 years ago
6 0

Answer:

Option (3)

Explanation:

Nicolaus Copernicus was an astronomer from Poland, who was born on the 19th of February in the year 1473. He played a great role in the field of modern astronomy.

He was the person who contributed to the heliocentric theory. This theory describes the position of the sun in the middle of the universe, and all the planets move around the sun. This theory was initially not accepted, and after about a century it was widely accepted.

This theory describes the present-day motion of the planets around the sun in the solar system. This theory replaced the geocentric theory.

Thus, the correct answer is option (3).

You might be interested in
Number of atoms of each element potassium chlorate?​
11111nata11111 [884]
5 atoms is the answer
6 0
3 years ago
What does the law of conservation of matter state
r-ruslan [8.4K]

Answer:

Matter can be changed, but not created or destroyed.

Explanation:

Matter can change for through physical and chemical changes, though this happens, matter is conserved. The same amount of matter exists before and after the change.

3 0
2 years ago
A spring with a spring constant of 50 N/m is stretched 15cm. What is the force and energy associated with this stretching?
Olenka [21]
Data:
F (force) = ? (Newton)
k (<span>Constant spring force) = 50 N/m
x (</span>Spring deformation) = 15 cm → 0.15 m

Formula:
F = k*x

Solving: 
F = k*x
F = 50*0.15
\boxed{\boxed{F = 7.5\:N}}\end{array}}\qquad\quad\checkmark

Data:
E (energy) = ? (joule)
k (Constant spring force) = 50 N/m
x (Spring deformation) = 15 cm → 0.15 m

Formula:
E = \frac{k*x^2}{2}

Solving:(Energy associated with this stretching)
E = \frac{k*x^2}{2}
E =  \frac{50*0.15^2}{2}
E =  \frac{50*0.0225}{2}
E =  \frac{1.125}{2}
\boxed{\boxed{E = 0.5625\:J}}\end{array}}\qquad\quad\checkmark

7 0
3 years ago
Consider the interference pattern produced by two parallel slits of width a and separation d, in which d = 3a. The slits are ill
laila [671]

Answer:

a)   m =1  θ = sin⁻¹  λ  / d,  m = 2        θ = sin⁻¹ ( λ  / 2d) ,   c)     m = 3

Explanation:

a) In the interference phenomenon the maxima are given by the expression

         d sin θ = m λ

the maximum for m = 1 is at the angle

          θ = sin⁻¹  λ  / d

the second maximum m = 2

          θ = sin⁻¹ ( λ  / 2d)

the third maximum m = 3

        θ = sin⁻¹ ( λ  / 3d)

the fourth maximum m = 4

       θ = sin⁻¹ ( λ  / 4d)

b) If we take into account the effect of diffraction, the intensity of the maximums is modulated by the envelope of the diffraction of each slit.

       I = I₀ cos² (Ф) (sin x / x)²

       Ф = π d sin θ /λ

       x = pi a sin θ /λ

where a is the width of the slits

with the values ​​of part a are introduced in the expression and we can calculate intensity of each maximum

c) The interference phenomenon gives us maximums of equal intensity and is modulated by the diffraction phenomenon that presents a minimum, when the interference reaches this minimum and is no longer present

maximum interference       d sin θ = m λ

first diffraction minimum    a sin θ = λ

we divide the two expressions

                       d / a = m

In our case

                   3a / a = m

                    m = 3

order three is no longer visible

7 0
3 years ago
Which is not a way to accelerate an object?
GREYUIT [131]
<span>Slowing an object down is not a means of accelerating it. It actually decelerates the motion of an object. Speeding it up, changing its direction and applying balanced forces accelerate an object. In order for an object to accelerate, a force must be applied. It follows Newton’s second law of motion where it states that a body at rest remains at rest unless a force is acted upon it. When you move an object, you are exerting a force onto it. By exerting a force on the object, you are actually displacing it from its initial position. You cannot apply force to the object without altering its position. Keep in mind that when you exert work, you are exerting energy too. </span>
6 0
3 years ago
Other questions:
  • Which of these best shows a change from potential to kinetic energy
    12·1 answer
  • The warmest layer of Earth's atmosphere is the ___.
    7·1 answer
  • How much heat is needed to raise the temperature of 8g of water by 20oC?
    7·1 answer
  • What should you do if your boat capsizes answers?
    13·1 answer
  • An object's potential energy is set it cannot change is this true
    12·2 answers
  • A charge Q accumulates on the hollow metallic dome, of radius R, of a Van de Graaff generator. A probe measures the electric fie
    7·2 answers
  • 1. A limiting factor for using nuclear energy is the
    13·2 answers
  • What is the magnification of an object that is 4.15 m in front of a camera that has an image position of 5.0 cm?
    6·1 answer
  • PLEASE HELP!!! 20 PIONTS!!!
    8·1 answer
  • Find the rate constantrif the population doubles in 12 days.b.ifp= 200 initially (whent= 0), what is the population whent= 18 da
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!