Considering the definition of pOH and strong base, the pOH of the aqueous solution is 1.14
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution and indicates the concentration of ion hydroxide (OH-).
pOH is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:
pOH= - log [OH⁻]
On the other hand, a strong base is that base that in an aqueous solution completely dissociates between the cation and OH-.
LiOH is a strong base, so the concentration of the hydroxide will be equal to the concentration of OH-. This is:
[LiOH]= [OH-]= 0.073 M
Replacing in the definition of pOH:
pOH= -log (0.073 M)
<u><em>pOH= 1.14 </em></u>
In summary, the pOH of the aqueous solution is 1.14
Learn more:
Natural selection requires variation between individuals. Mutations and reproduction increase genetic variation in a population. Natural selection occurs when environmental pressures favor certain traits that are passed on to offspring.
Answer:
Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.
Explanation:
- It is a stichiometry problem.
- We should write the balance equation of the mentioned chemical reaction:
<em>2Al + 3CuCl₂ → 3Cu + 2AlCl₃.</em>
- It is clear that 2.0 moles of Al foil reacts with 3.0 moles of CuCl₂ to produce 3.0 moles of Cu metal and 2.0 moles of AlCl₃.
- Also, we need to calculate the number of moles of the reported masses of Al foil (0.50 g) and CuCl₂ (0.75 g) using the relation:
<em>n = mass / molar mass</em>
- The no. of moles of Al foil = mass / atomic mass = (0.50 g) / (26.98 g/mol) = 0.0185 mol.
- The no. of moles of CuCl₂ = mass / molar mass = (0.75 g) / (134.45 g/mol) = 5.578 x 10⁻³ mol.
- <em>From the stichiometry Al foil reacts with CuCl₂ with a ratio of 2:3.</em>
∴ 3.85 x 10⁻³ mol of Al foil reacts completely with 5.578 x 10⁻³ mol of CuCl₂ with <em>(2:3)</em> ratio and CuCl₂ is the limiting reactant while Al foil is in excess.
- From the stichiometry 3.0 moles of CuCl₂ will produce the same no. of moles of copper metal (3.0 moles).
- So, this reaction will produce 5.578 x 10⁻³ mol of copper metal.
- Finally, we can calculate the mass of copper produced using:
mass of Cu = no. of moles x Atomic mass of Cu = (5.578 x 10⁻³ mol)(63.546 g/mol) = 0.354459 g ≅ 0.36 g.
- <u><em>So, the answer is:</em></u>
<em>Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.</em>
Answer:
He used Velocity and Radius.
Explanation:
The uncertainty truths contradicts Bohr's thoughts of electrons.
D. Model number 2
Hope this helps!! (: