Answer:
36 ATPs
Explanation:
Cellular respiration starts with glycolysis wherein glucose is broken down into two molecules of pyruvate. The process of glycolysis forms two molecules of ATP by substrate-level phosphorylation for each glucose molecule. Both pyruvate molecules are converted into acetyl CoA to enter into the Kreb's cycle. Kreb's cycle forms two ATP molecules by substrate-level phosphorylation. NADH and FADH2 formed during glycolysis and Kreb's cycle are oxidized by the electron transport chain. This process also forms as many as 34 ATP molecules. If acetyl CoA is not formed, the total ATP gain per glucose will be only 2 ATP molecules (from glycolysis only) which is 38-2= 36 less than the total.
Explanation:
Comparing prokaryotes and eukaryotes
All life on Earth consists of either eukaryotic cells or prokaryotic cells. Prokaryotes were the first form of life. Scientists believe that eukaryotes evolved from prokaryotes around 2.7 billion years ago.
The primary distinction between these two types of organisms is that eukaryotic cells have a membrane-bound nucleus and prokaryotic cells do not. The nucleus is where eukaryotes store their genetic information. In prokaryotes, DNA is bundled together in the nucleoid region, but it is not stored within a membrane-bound nucleus.
The nucleus is only one of many membrane-bound organelles in eukaryotes. Prokaryotes, on the other hand, have no membrane-bound organelles. Another important difference is the DNA structure. Eukaryote DNA consists of multiple molecules of double-stranded linear DNA, while that of prokaryotes is double-stranded and circular.
Answer:
The conditions under which a particular enzyme is most active are called the optimum conditions
Explanation:
When an enzyme is most active the rate of the biological reaction it catalyses is highest. The bacterium Thermus aquaticus lives in hot springs. Its enzymes have an optimum temperature of around 70 oC.
Answer:
D) Competition between organisms
Explanation:
Random mating between organisms, absence of any factor of evolution (mutation, recombination, gene flow, migration etc.) and a large population size serve to maintain the allele frequency and thereby the phenotype frequency over generations. However, competition between organisms for any natural resource leads to natural selection of "better competing organisms" and increases their phenotype frequency in the population.
A carnivore is something that eat meats.