Answer:
i)
Find the attached
ii)
The mathematical model that best fits the data is;
The quadratic model
Step-by-step explanation:
i)
A scatter-plot can easily be constructed using applications such as Ms. Excel.
In Ms. Excel, enter the data into any two adjacent columns. Next, highlight the data, then click the insert ribbon and select the scatter-plot option.
Excel returns a scatter-plot chart as shown in the attachment below.
ii)
After obtaining the scatter-plot, we shall need to add a trend line in order to determine the mathematical model that best fits the data given.
Click anywhere inside the chart, then select the design tab under chart tools. Click on the Add Chart element in the upper left corner of the excel workbook and select more trend-line options. This feature will enable us to fit any trend-line to our data.
Select any trend line option ensuring you check the boxes; Display Equation on chart and Display R-squared value on chart.
Find the attached for the various trend-lines fitted.
The mathematical model that best fits the data is;
The quadratic model
Since it has the largest R-squared value of 1.00
We are given the following quadratic equation
The vertex is the maximum/minimum point of the quadratic equation.
The x-coordinate of the vertex is given by
Comparing the given equation with the general form of the quadratic equation, the coefficients are
a = 2
b = 7
c = -10
The y-coordinate of the vertex is given by
This means that we have a minimum point.
Therefore, the minimum point of the given quadratic equation is
Answer:
Step-by-step explanation:
we are given that A robot is expected to filter pollution out of at least 350 liters of air and water.
Also It filters air at the rate of 50 liters per minute, and it filters water at the rate of 20 liters per minute.
The inequality for number of minutes the robot should filter air (A) and water (W) to meet this expectations can be writte as follows:
Hence the required inequality has been formulated.