1. a+3a+4b=5b
2. a+3a=5b-4b
3. 4a=5b-4b
4. 4a=b
a=1/4b
(I think 1/4b is the answer) hope this helps :)
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Midpoint Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
Point (2, 9)
Point (8, 1)
<u>Step 2: Identify</u>
(2, 9) → x₁ = 2, y₁ = 9
(8, 1) → x₂ = 8, y₂ = 1
<u>Step 3: Find Midpoint</u>
Simply plug in your coordinates into the midpoint formula to find midpoint
- Substitute in points [Midpoint Formula]:

- [Fractions] Add:

- [Fractions] Divide:

$12,500 x 5% = $625.
$12,500 + $625 = $13,125.
Hello from MrBillDoesMath!
Answer:
See Discussion below
Discussion:
A function f is even if f(-x) = f(x)
f(x) f(-x) Are they equal?
----------------------------------------------------------------------------------------
-x^8 + 2x^6-5x -(-x)^8 + 2(-x)^6 + 5x No
3 abs(x) - 4 3 abs(-x) -4 Yes
log5 x^2 log5 (-x)^2 Yes
(6x)^ (1/7) (-6x)^(1/7) No
e^(x^2-x) e^( (-x)^2+x) No
(x^8 +5x^2)^(-1) ( (-x)^8 + 5 (-x)^2) ^(-1) Yes
Answers with Yes, above are even functions.
Regards,
MrB
P.S. I'll be on vacation from Friday, Dec 22 to Jan 2, 2019. Have a Great New Year!
Step-by-step explanation:
<h3>Appropriate Question :-</h3>
Find the limit
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)

Given expression is
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
On substituting directly x = 1, we get,


which is indeterminant form.
Consider again,
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
can be rewritten as
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%203x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%202x%20-%20x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20x%28x%20-%202%29%20-%201%28x%20-%202%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%7B%28x%20-%202%29%7D%5E%7B2%7D%20-%201%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%202%20-%201%29%28x%20-%202%20%2B%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%28x%20-%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%7D%7Bx%28x%20-%202%29%7D%5Cright%5D)



Hence,
![\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}](https://tex.z-dn.net/?f=%5Crm%5Cimplies%20%5C%3A%5Cboxed%7B%20%5Crm%7B%20%5C%3A%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D%20%3D%202%20%5C%3A%20%7D%7D)
