Answer:
first blank- 2 second blank- 3 1/2 or 4 may be 3 too
Step-by-step explanation:
well when you look at the shape you can go from a to b and count the blocks which it would be 2
and you would want to do the same thing with C,D
Answer:
8 grams
Step-by-step explanation:
The balance is in equilibrium, so the weights of the two sides are equal.
Let the weight of a square be s.
Left side: 2s + 4
Right side: s + 3(4) = s + 12
The weights are equal, so we set the two expressions equal.
2s + 4 = s + 12
s = 8
Answer: The weight of a square is 8 grams.
Question 2: The first step was the combine the like terms; in this example he is subtracting the 3x on both sides of the =.
Answer:
Area of the rectangular pen is: 
Step-by-step explanation:
We need to specify that the perimeter of the rectangular area of side x adds to the amount of fence Pablo has (36 feet). Recall as well that the opposite sides of a rectangle are equal, so if there is a side of length x, there must be another one of this size as well (a total of 2 x in the perimeter),let's assume that the perpendicular sides to x are of length y, then:
Perimeter= 2 x + 2 y = 36
so, 2 (x+y) = 36 then (x+y) = 18
and therefore the side y should be:
y = 18 - x
Now we can write the formula for representing the area of the rectangle (product of both quantities: x * y

Answer:
Step-by-step explanation:
depreciation for three years = 32000 - 24500 = $ 7500
depreciation per year = 7500/3 = $ 2500
depreciation % = (2500/32000)*100 = 7.81%
Value of truck after n years = 32000 * (7.81%)*n
La franja amarilla del rectángulo tiene un área de 30 centímetros cuadrados.
<h3>¿Cuál es el área de la franja amarilla del rectángulo?</h3>
En este problema tenemos un rectángulo formado por dos cuadrados que se traslapan uno al otro. La franja amarilla es el área en la que los cuadrados se traslapan. La anchura del rectángulo es descrita por la siguiente ecuación:
(10 - x) + 2 · x = 17
Donde x se mide en centímetros.
A continuación, despejamos x en la ecuación descrita:
10 + x = 17
x = 7
Ahora, el área de la franja amarilla se determina mediante la fórmula de area de un rectángulo:
A = b · h
Donde:
- b - Base del rectángulo, en centímetros.
- h - Altura del rectángulo, en centímetros.
- A - Área del rectángulo, en centímetros cuadrados.
A = (10 - 7) · 10
A = 3 · 10
A = 30
El área de la franja amarilla del rectángulo es igual a 30 centímetros cuadrados.
Para aprender más sobre áreas de rectángulos: brainly.com/question/23058403
#SPJ1