<span>12.3
Volume function: v(x) = ((18-x)(x-1)^2)/(4pi)
Since the perimeter of the piece of sheet metal is 36, the height of the tube created will be 36/2 - x = 18-x.
The volume of the tube will be the area of the cross section multiplied by the height. The area of the cross section will be pi r^2 and r will be (x-1)/(2pi). So the volume of the tube is
v(x) = (18-x)pi((x-1)/(2pi))^2
v(x) = (18-x)pi((x-1)^2/(4pi^2))
v(x) = ((18-x)(x-1)^2)/(4pi)
The maximum volume will happen when the value of the first derivative is zero. So calculate the first derivative:
v'(x) = (x-1)(3x - 37) / (4pi)
Convert to quadratic equation.
(3x^2 - 40x + 37)/(4pi) = 0
3/(4pi)x^2 - (10/pi)x + 37/(4pi) = 0
Now calculate the roots using the quadratic formula with a = 3/(4pi), b = -10/pi, and c = 37/(4pi)
The roots occur at x = 1 and x = 12 1/3. There are the points where the slope of the volume equation is zero. The root of 1 happens just as the volume of the tube is 0. So the root of 12 1/3 is the value you want where the volume of the tube is maximized. So the answer to the nearest tenth is 12.3</span>
Answer:
Multiply the top equation by -3 and the bottom equation by 2
Step-by-step explanation:
Given <u>system of equations</u>:

To solve the given system of equations by addition, make one of the variables in both equations <u>sum to zero</u>. To do this, the chosen variable must have the <u>same coefficient</u>, but it should be <u>negative</u> in one equation and <u>positive</u> in the other, so that when the two equations are added together, the variable is <u>eliminated</u>.
<u>To eliminate the </u><u>variable y</u>:
Multiply the top equation by -3 to make the coefficient of the y variable 6:

Multiply the bottom equation by 2 to make the coefficient of the y variable -6:

Add the two equations together to <u>eliminate y</u>:

<u>Solve</u> for x:


<u>Substitute</u> the found value of x into one of the equations and <u>solve for y</u>:





Learn more about systems of equations here:
brainly.com/question/27868564
brainly.com/question/27520807
Answer:
side A 14, side b is11
Step-by-step explanation:
Let the regular price be X
x\98.60 x 100=29%
100x\98.60=29(multiply both sides by 98.60 to remove the denominator
100x=2859.4(divide both sides by 100
x=28.594
regular price=$28.594
6,051m = 6,000m + 51m
1km=1,000 metres
--------------------------------
Therefore:
6,051 metres = 6,000/1,000km + 51/1,000km
=6,051/1,000km
=6.051km