1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
12

A recent survey of 50 executives who were laid off during a recent recession revealed it took a mean of 26 weeks for them to fin

d another position. The standard deviation of the sample was 6.2 weeks. Construct a 95% confidence interval for the population mean.
Mathematics
1 answer:
g100num [7]3 years ago
6 0

Answer: (24.28,\ 27.72)

Step-by-step explanation:

Given : Sample size : n=50

Sample mean : \overline{x}=26

Standard deviation : \sigma =6.2

Significance level : \alpha=1-0.95=0.05

Critical value : z_{\alpha/2}=1.96

Formula to find the confidence interval for population mean :-

\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}\\\\=26\pm(1.96)\dfrac{6.2}{\sqrt{50}}\\\\\approx26\pm1.72\\\\=(26-1.72,\ 26+1.72)\\\\=(24.28,\ 27.72)

Hence, a 95% confidence interval for the population mean = (24.28,\ 27.72)

You might be interested in
PLEASE HELP!! I will make you brainlest.
Dmitry [639]

Answer:

Question 13: 90, Question 14: y = 3\sqrt{10}, Question 15: x = 17\sqrt{3}, Question 16: y = 34\sqrt{3}.

Step-by-step explanation:

7 0
3 years ago
2(3x+1)=11 help me plz​
padilas [110]

Answer:

x=18

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Use the Counting Principle to find the probability. Choosing the 7 winning lottery numbers when the numbers are chosen at random
frozen [14]

Answer:   120

<u>Step-by-step explanation:</u>

Since the order of the numbers doesn't matter we can use the formula:

\dfrac{n!}{r!(n-r)!}\quad \text{where n is the quantity of items and r is the quantity chosen}\\\\\text{In this problem, there are 10 numbers (n = 10) and 7 to be chosen (r = 7)}\\\\_{10}C_{7}=\dfrac{10!}{7!(10-7)!}\\\\.\qquad=\dfrac{10!}{7!3!}\\\\.\qquad=\dfrac{10\times 9\times 8\times 7!}{7!\times 3\times 2\times 1}\\\\.\qquad=10\times 3\times 4\\\\.\qquad=120

7 0
3 years ago
Read 2 more answers
How did they get this
katrin2010 [14]
Somewhere in the text, it must say that x = 2 and y = -1 or else, the values just seem made up out of thin air. 
3 0
3 years ago
Read 2 more answers
Ayuda porfa, es urgente
storchak [24]

Answer:

Media: 167.88 cm

Mediana:  167.6 cm

Modo: 166.67 cm

Step-by-step explanation:

Hola!

La variable de interés es:

X: estatura de un alumno de noveno año de educación básica.

<u>1)</u>

Primero debes ordenar los datos de menor a mayor y contar cuantos de ellos corresponden dentro de cada intervalo determinado, por ejemplo, el primer intervalo es:

[160;164)

Los intervalos están definidos con el límite inferior cerrado, es decir que incluye el valor de dicho límite, y el límite inferior abierto, es decir, que ese valor no está incluido en el intervalo.

160,160,160,161,162,163,164,165,165,165,165,166,167,167,167,167,168,168,168,169,170, 170, 170,171,173,173,173,175,175,176.

f(1)= 6 (seis valores de estatura corresponden a este intervalo)

La sumatoria de todas las frecuencias absolutas debe dar por resultado el total de observaciones n= 30

Para el segundo intervalo [164;168)

f(2)= 10

<u>2)</u>

hi representa la frecuencia relativa simple y esta se calcula como fi/n

Por ejemplo para el primer intervalo:

h(1)= f(1)/n= 6/30= 0.20

Esta indica la proporción de que las alturas estén entre 160 y 164 cm.

En porcentaje se expresa como hi*100, para el primer intervalo: 0.20*100)= 20%

Para el segundo intervalo h(2)= f(2)/n= 10/30= 0.33 y su porcentaje es 33%

Como indican la proporción de cada categoría de la distribución, la sumatoria de las frecuencias relativas simples de todas las categorías debe ser 1.

<u>3)</u>

Como lo dice su nombre, esta frecuencia es acumulada y se calcula como la sumatoria de las frecuencias absolutas simples, para el primer intervalo, dado que previo a él no hay "nada" es igual a la frecuencia absoluta simple:

F(1)= f(1)

Para el segundo intervalo, es la frecuencia absoluta simple del primer intervalo más la frecuencia relativa simple del segundo intervalo:

F(2)= f(1) + f(2)= 6 + 10= 16

<u>4)</u>

Esta frecuencia también representa la sumatoria de las frecuencias relativas simples.

H(1)= h(1)= 0.20 como previo al primer intervalo no existe distribución definida, la frecuencia relativa acumulada es igual a la frecuencia relativa simple.

Para el segundo intervalo la frecuencia relativa acumulada es:

H(2)= h(1)+h(2)?= 0.20+0.33= 0.57

Adjunta a la respuesta encontrarás la tabla completa.

5)

Como no específica medidas de tendencia central requeridas, voy a calcular la media, mediana y modo utilizando la tabla.

<u>Media</u>

X[barra]= (∑x'fi)/n= ∑x'*hi

Dónde x' representa la marca de clase de cada intervalo. Para calcular la marca de clase de los intervalos debes realizar un promedio entre sus límites y su valor siempre debe encontrarse dentro de los límites del intervalo. Si no es así, has cometido un error de cálculos:

(Limite inferior + Limite superior)/2

1. [160;164)  x₁'= (160+164)/2= 162

2. [164;168)  x₂'= 166

3. [168;172)  x₃'= 170

4. [172;176)  x₄'= 174

Una vez que calculaste las marcas de clase, puedes calcular la media:

X[barra]= ∑x'*hi= (162*0.20)+(166*0.33)+(170*0.27)+(174*0.20)= 167.88 cm

<u>Mediana:</u>

La mediana es el valor de la variable que divide a la muestra en dos (50%-50%).

Para poder calcularla primero debes identificar su posición, en este tipo de presentación, debes identificar el intervalo en el que se encuentra incluida la mediana.

Para muestras pares, la posición de la mediana se calcula como:

PosMe= n/2= 30/2= 15

Esto significa que la mediana corresponde a la 15va observación de la muestra, observando la columna de las frecuencias absolutas (simples o acumuladas) debes identificar cual es el intervalo de la mediana:

Al segundo intervalo se corresponde una frecuencia acumulada de 16, lo que significa que la posición de la mediana está incluida en este intervalo:

[164;168)

Entonces puedes calcular la mediana como:

Me= Li + c [\frac{PosMe-F_{(i-1)}}{f_i} ]

Dónde

Li: es el límite inferior del intervalo de mediana.

c: es la amplitud del intervalo

F₍i₋₁₎: frecuencia absoluta acumulada del intervalo anterior al intervalo mediana

fi: frecuencia absoluta del intervalo mediana

Me= 164 + 4 [\frac{15-6}{10} ]= 167.6

Me= 167.6 cm, como puedes notar, el valor de la mediana se encuentra entre los límites del intervalo.

<u>Modo o Moda:</u>

El modo o la moda de una distribución corresponde al valor más observado, es decir, al valor con mayor frecuencia absoluta simple. Al igual que la media, para calcular el modo primero debes identificar el intervalo que lo contiene. En este caso, el intervalo modal será aquel con la mayor frecuencia absoluta simple.

[164;168)

La fórmula para calcular el modo es:

Md= Li + c[\frac{(f_{max}-f_{ant})}{(f_{max}-f_{ant})+(f_{max}-f_{post})} ]

Li: es el límite inferior del intervalo modal

c: es la amplitud del intervalo

f_{max}: es la frecuencia absoluta simple del intervalo modal.

f_{ant}: es la frecuencia absoluta simple del intervalo anterior al intervalo modal.

f_{post}: es la frecuencia absoluta simple del intervalo posterior al intervalo modal.

Md= 164 + 4[\frac{10-6)}{(10-6)+(10-8)} ]= 164+4[\frac{4}{4+2} ]= 166.67

Md= 166.67 cm

¡Espero que tengas un buen día!

4 0
3 years ago
Other questions:
  • Eric eats 1/6 of an apple pie and Jack eats 1/4 of the apple pie. How much of the pie has been eaten?
    15·2 answers
  • What is (mixed numbers) 4 and 1/4, 4 and 1/8, 5 and 10/11, 4 and 2/12 in order from least to greatest???​
    14·1 answer
  • Determine if the equations are parallel perpendicular or neither 10x-2y=16 and x+5y=-20
    15·1 answer
  • I have attached a picture. Having trouble with #27&amp; 28
    9·1 answer
  • For the function y = log(x - 2)+1, which of the following statements is
    6·1 answer
  • The coordinate grid shows three points P, Q, and R:
    11·2 answers
  • What is the measure of angle M?
    7·1 answer
  • Please help!!! i’ll mark brainliest!
    10·1 answer
  • In a pizza store, they are able to make 5 pizzas in 10 minutes. How many pizzas can they make in 30 minutes? (just type the numb
    10·2 answers
  • 57 divided by 2 [with a remainder]
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!