Answer:

Explanation:
The kinetic energy of a body is that energy it possesses due to its motion. In classical mechanics, this energy depends only on its mass and speed, as follows:

The speed in an uniformly accelerated motion is given by:

Replacing this expression in the formula for the kinetic energy, we have:

So, if we have
:

Equaling (1) and (2) and solving for
:

Answer:
Explanation:
V = Deltax/Deltat
V = 15.0 m/s
Displacement:
(a) Vf = Vi + adeltat
Vf = 15.0m/s - 9.8m/s^2 x 0.500s = 10.1m/s
Displacement = (15.0m/s x 0.500s) - (0.5)(9.8m/s^2)(0.500s)^2 = 6.275m
(b) Vf = 15.0m/s - 9.8m/s^2 x 1.00s = 5.2m/s
Displacement = (15.0m/s x 1.00s) - (0.5)(9.8m/s^2)(1s)^2 = 10.1m
(c) Vf = 15.0m/s - 9.8m/s^2 x 1.50s = 14.7m/s
Displacement = (15.0m/s x 1.50s) - (0.5)(9.8m/s^2)(1.5s)^2 = 11.475m
(d) Vf = 15.0m/s - 9.8m/s^2 x 2.00s = 19.6m/s
Displacement = (15.0m/s x 2.00s) - (0.5)(9.8m/s^2)(2s)^2 = 10.4m
Given :
A cell of e.m.f 1.5 V and internal resistance 2.5 ohm is connected in series with an ammeter of resistance 0.5 ohm.
To Find :
The current in the circuit.
Solution :
We know, resistance of the ammeter is in series with the circuit.
So, total resistance is :
R = 2.5 + 0.5 ohm
R = 3 ohm
Also, e.m.f applied is 1.5 V .
Now, by ohm's law :

Therefore, the current in the circuit is 0.5 A.
Answer:
90 m/s
8100 m
Explanation:
Given:
v₀ = 0 m/s
a = 0.5 m/s²
t = 3 min = 180 s
Find: v and Δx
v = at + v₀
v = (0.5 m/s²) (180 s) + 0 m/s
v = 90 m/s
Δx = v₀ t + ½ at²
Δx = (0 m/s) (180 s) + ½ (0.5 m/s²) (180 s)²
Δx = 8100 m
Answer:
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
Explanation:
Joule -Thompson effect
Throttling phenomenon is called Joule -Thompson effect.We know that throttling is a process in which pressure energy will convert in to thermal energy.
Generally in throttling exit pressure is low as compare to inlet pressure but exit temperature maybe more or less or maybe remains constant depending upon flow or fluid flow through passes.
Now lets take Steady flow process
Let
Pressure and temperature at inlet and
Pressure and temperature at exit
We know that Joule -Thompson coefficient given as

Now from T-ds equation
dh=Tds=vdp
So
![Tds=C_pdt-\left [T\left(\frac{\partial v}{\partial T}\right)_p\right]dp](https://tex.z-dn.net/?f=Tds%3DC_pdt-%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p%5Cright%5Ddp)
⇒![dh=C_pdt-\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=dh%3DC_pdt-%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
So Joule -Thompson coefficient
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
This is Joule -Thompson coefficient for all gas (real or ideal gas)
We know that for Ideal gas Pv=mRT

So by putting the values in
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
For ideal gas.