Make Neptune closer to the sun because then it would have a stronger gravitation pull. Because the closer the objects are, they will have a stronger gravitaional force and when the object has more mass, the gravity is also stronger. So, if the mass is reduced, the gravity force would be reduced, but if you bring neptune closer, the gravity force would increase
Answer:
we learned that an object that is vibrating is acted upon by a restoring force. The restoring force causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches the equilibrium position. It is this restoring force that is responsible for the vibration. So what forces act upon a pendulum bob? And what is the restoring force for a pendulum? There are two dominant forces acting upon a pendulum bob at all times during the course of its motion. There is the force of gravity that acts downward upon the bob. It results from the Earth's mass attracting the mass of the bob. And there is a tension force acting upward and towards the pivot point of the pendulum. The tension force results from the string pulling upon the bob of the pendulum. In our discussion, we will ignore the influence of air resistance - a third force that always opposes the motion of the bob as it swings to and fro. The air resistance force is relatively weak compared to the two dominant forces.
The gravity force is highly predictable; it is always in the same direction (down) and always of the same magnitude - mass*9.8 N/kg. The tension force is considerably less predictable. Both its direction and its magnitude change as the bob swings to and fro. The direction of the tension force is always towards the pivot point. So as the bob swings to the left of its equilibrium position, the tension force is at an angle - directed upwards and to the right. And as the bob swings to the right of its equilibrium position, the tension is directed upwards and to the left. The diagram below depicts the direction of these two forces at five different positions over the course of the pendulum's path.
that's what I know so far
19.8 N force is tending to lift Rover vertically off the ground.
<h3>What is horizontal and vertical component?</h3>
The horizontal velocity component (
) describes the influence of the velocity in displacing the projectile horizontally. The vertical velocity component (
) describes the influence of the velocity in displacing the projectile vertically.
According to the question,
The women pulls the dog with a force of 30 N at an angle of 29° from the horizontal.
Horizontal component= 30cos(29°) = 22.2 N
Vertical component = 30sin(29°) = 19.8 N
Therefore,
The horizontal component would tend to make the dog move forward and the vertical component would tend lift it off the ground.
Hence,
19.8 N force is tending to lift Rover vertically off the ground.
Learn more about horizontal and vertical component here:
brainly.com/question/11776718
#SPJ1
The velocity increased from 4 m/s to 22 m/s in 3 seconds. 18 m/s in 3 seconds so the average acceleration is change in velocity divided by time. 18 m/s divided by 3 seconds = 6 m/s^2