Answer:
4(3n+2) or 12n+8
Step-by-step explanation:
Given expression is:

The numerator of the fraction will be multiplied with 9n^2- 4
So, Multiplication will give us:

We can simplify the expression before multiplication.
The numerator will be broken down using the formula:
![a^2 - b^2 = (a+b)(a-b)\\So,\\= \frac{8[(3n)^2 - (2)^2]}{6n-4}\\ = \frac{8(3n-2)(3n+2)}{6n-4}](https://tex.z-dn.net/?f=a%5E2%20-%20b%5E2%20%3D%20%28a%2Bb%29%28a-b%29%5C%5CSo%2C%5C%5C%3D%20%5Cfrac%7B8%5B%283n%29%5E2%20-%20%282%29%5E2%5D%7D%7B6n-4%7D%5C%5C%20%3D%20%5Cfrac%7B8%283n-2%29%283n%2B2%29%7D%7B6n-4%7D)
We can take 2 as common factor from denominator

Hence the product is 4(3n+2) or 12n+8 ..
Answer:
Apex: 119,436.80
Step-by-step explanation:
Answer:
The answer is 21
Hope it helps
Please mark me as the brainliest
Thank you
Answer:
Probability that the measure of a segment is greater than 3 = 0.6
Step-by-step explanation:
From the given attachment,
AB ≅ BC, AC ≅ CD and AD = 12
Therefore, AC ≅ CD = 
= 6 units
Since AC ≅ CD
AB + BC ≅ CD
2(AB) = 6
AB = 3 units
Now we have measurements of the segments as,
AB = BC = 3 units
AC = CD = 6 units
AD = 12 units
Total number of segments = 5
Length of segments more than 3 = 3
Probability to pick a segment measuring greater than 3,
= 
= 
= 0.6
6x³y + 6xy − 12x² − 12 = 6(xy-2) * (x²+1)
(x²+1) is a factor of 6x³y + 6xy − 12x² − 12