Question 1: A material that causes a wave to bounce off it is called the. Answer : Reflection
Question 2: A material that takes in a wave when the wave hits is called the. Answer: Absorber
2.083 Liters of 6.0 M solution sulfuric acid is required. This solved using molecular calculations and Titration.
Solution: 
Moles of hydrogen gas = 
Then 12.5 moles of hydrogen will be obtained from Moles of Sulfuric acid = 12.5 mol
Molarity of the sulfuric acid solution = 6.0 M = 6 mol/ l
6M = 
where V is the volume needed

V = 2.083 l
<h3>
What is Titration?</h3>
- Titration, commonly referred to as titrimetry, is a typical quantitative chemical analysis method used in laboratories to ascertain the unidentified quantity of an analyte .
- Titration is frequently referred to as volumetric analysis because it relies heavily on volume measurements. The titrant or titrator is a reagent that is prepared as a standard solution.
- To determine concentration, a solution of the analyte or titrand reacts with a known concentration and volume of the titrant. The titration volume is the amount of titrant that has responded.
- Titrations come in a variety of forms with various protocols and objectives. Redox and acid-base titrations are the two most typical types of qualitative titrations.
To learn more about titration with the given link
brainly.com/question/2728613
#SPJ4
Here is the full question:
Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.
What is the concentration at 10 minutes? (Round your answer to three decimal places.
Answer:
0.046 %
Explanation:
The rate-in;

= 0.8
The rate-out
= 
= 
We can say that:

where;
A(0)= 0.2% × 6000
A(0)= 0.002 × 6000
A(0)= 12

Integration of the above linear equation =

so we have:



∴ 
Since A(0) = 12
Then;



Hence;



∴ the concentration at 10 minutes is ;
=
%
= 0.0456667 %
= 0.046% to three decimal places
Answer:
d) V = 91.3 L
Explanation:
Given data:
Volume of nitrogen = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Number of atoms of nitrogen = 2.454×10²⁴ atoms
Solution:
First of all we will calculate the number of moles of nitrogen by using Avogadro number.
1 mole = 6.022×10²³ atoms
2.454×10²⁴ atoms × 1 mol / 6.022×10²³ atoms
0.407×10¹ mol
4.07 mol
Volume of nitrogen:
PV = nRT
1 atm × V = 4.07 mol ×0.0821 atm.L /mol.K ×273.15 K
V = 91.3 atm.L /1 atm
V = 91.3 L