<u>Answer:</u> The
for the reaction is 54.6 kJ/mol
<u>Explanation:</u>
For the given balanced chemical equation:

We are given:

- To calculate
for the reaction, we use the equation:
![\Delta G^o_{rxn}=\sum [n\times \Delta G_f(product)]-\sum [n\times \Delta G_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28reactant%29%5D)
For the given equation:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(COCl_2)})]-[(1\times \Delta G^o_f_{(CO_2)})+(1\times \Delta G^o_f_{(CCl_4)})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28COCl_2%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CO_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CCl_4%29%7D%29%5D)
Putting values in above equation, we get:
![\Delta G^o_{rxn}=[(2\times (-204.9))-((1\times (-394.4))+(1\times (-62.3)))]\\\Delta G^o_{rxn}=46.9kJ=46900J](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-204.9%29%29-%28%281%5Ctimes%20%28-394.4%29%29%2B%281%5Ctimes%20%28-62.3%29%29%29%5D%5C%5C%5CDelta%20G%5Eo_%7Brxn%7D%3D46.9kJ%3D46900J)
Conversion factor used = 1 kJ = 1000 J
- The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

- To calculate the Gibbs free energy of the reaction, we use the equation:

where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 46900 J
R = Gas constant = 
T = Temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 22.92
Putting values in above equation, we get:

Hence, the
for the reaction is 54.6 kJ/mol
Answer:
Electrons on atoms have different amounts of energy proportional to the distance of their orbital from the nucleus. So in the flame, electrons get excited and pushed to higher energy levels by the heat energy. When they fall back down, they give off photons of light of different colors, based upon how far they fall.
Answer:
A
Explanation:
divide the time value by 3600
Answer:
50,000,000 Hz
Explanation:
<em>Rearrange the formula:</em>
wave speed = frequency × wavelength → frequency = wave speed ÷ wavelength
wave speed = 300,000,000m/s
wavelength = 6m
<em>Substitute in the values:</em>
frequency = 300,000,000 ÷ 6
frequency = 50,000,000 Hz
Hope this helps!
Mass of BaO in initial mixture = 3.50g
Explanation:
Let mass of BaO in mixture be x g
mass of MgO in mixture be (6.35 - x) g
Initially CO_2
Volume = 3.50 L
Temp = 303 K
Pressure = 750 torr = 750 / 760 atm
Applying ideal gas equation
PV = nRT
n = PV / RT
(n)_CO_2 = ((750/760)* 3.50) / 0.0821 * 303
(n)_CO_2 = 0.139 mole
Finally; mole of CO_2
n= PV /RT
((245/760) *3.5) / 303* 0.0821
(n)_CO_2 = 0.045 mole
Mole of CO_2 reacted = 0.139 - 0.045
=0.044 mole
BaO + CO_2 BaCO_3
Mgo + CO_2 MgCO_3
moles of CO_2 reacted = ( moles of BaO + moles of MgO)
moles of BaO in mixture = x / 153 mole
moles of MgO in mixture = 6.35 - x mole / 40
Equating,
x/ 153 +6.35/40 = 0.094
= x/153 + 6.35 / 40 - x/40 =0.094
= x (1/40 - 1153) = (6.35/40 - 0.094)
= x * 10.018464
= 0.06475
mass of BaO in mixture = 3.50g