Answer: the electrons remain around the atomic nuclei due to the existence of a positive charge on the nuclei that, of course, atract the negative charged electrons. The protons are the paricles in the nuclei that hold the positive charge.
Justification:
First, I wish to explaing the sense of the question. The question arises because given that the electrons have negative electric charge how is that they do not repeal each other to the point that they end leaving the nucleous of the atom alone.
This is you know that equal charges repel each other, so how is it that the electrons stand around the nucleous instead of separateing and levaing the atomic nucleous alone.
The answer is due to the existence of a positive charge on the nuclei that, of course, atract the negative charged electrons. That positive charge is the protons.
The protons are particles in the atomic nuclei that are positive charged and they exert the right attractive force upon the electrons to permit them stay in the orbitals (regions of the space around the nuclei of the atoms where the electrons are found).
Answer: 0.118M
Explanation:
The formula for molarity is: 
First, we need to find the number of moles of NaCl.

Next, we must convert millimeters to liters. We can do that by dividing the number of mL by 1000.

Now we have our needed data! All we need to do now is plug in our data to the molarity formula.

I hope this helps! Pls mark brainliest!! :)
Answer:
Option D. 53 moles.
Explanation:
The following data were obtained from the question:
Number of mole of C5H10O2 = 5.3 moles
Number of mole of Hydrogen in 5.3 moles of C5H10O2 =?
From the chemical formula of propyl acetate, C5H10O2,
1 mole of C5H10O2 contains 10 moles of H.
Therefore, 5.3 moles of C5H10O2 will contain = 5.3 × 10 = 53 moles of H.
Thus, 5.3 moles of C5H10O2 contains 53 moles of H.
Would it be lack of water and food?