Answer:
C) (-3, -1)
Step-by-step explanation:
y = 5/3x + 4
When x = 0, y = 4
When y = 0, x = -2.4
graph the points: (0, 4) and (-2.4, 0)
y = -2/3x - 3
When x = 0, y = -3
When y = 0, x = -4.5
graph the points: (0, -3) and (-4.5, 0)
The lines will cross at point: (-3, -1)
Answer:
1144 o 286
Step-by-step explanation:
Si pregunta por la cantidad de personas que se pesaron, la respuesta es (8/10) * (1430) = 8 * 143 = 1144.
Si desea saber cuántas personas no se pesaron, la respuesta es 1430* (2/10) = 286
Answer:
Please check the explanation.
Step-by-step explanation:
Given the function

We know that the domain of the function is the set of input or arguments for which the function is real and defined.
In other words,
- Domain refers to all the possible sets of input values on the x-axis.
Now, determine non-negative values for radicals so that we can sort out the domain values for which the function can be defined.

as x³ - 16x ≥ 0

Thus, identifying the intervals:

Thus,
The domain of the function f(x) is:
![x\left(x+4\right)\left(x-4\right)\ge \:0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-4\le \:x\le \:0\quad \mathrm{or}\quad \:x\ge \:4\:\\ \:\mathrm{Interval\:Notation:}&\:\left[-4,\:0\right]\cup \:[4,\:\infty \:)\end{bmatrix}](https://tex.z-dn.net/?f=x%5Cleft%28x%2B4%5Cright%29%5Cleft%28x-4%5Cright%29%5Cge%20%5C%3A0%5Cquad%20%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3A-4%5Cle%20%5C%3Ax%5Cle%20%5C%3A0%5Cquad%20%5Cmathrm%7Bor%7D%5Cquad%20%5C%3Ax%5Cge%20%5C%3A4%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%5Cleft%5B-4%2C%5C%3A0%5Cright%5D%5Ccup%20%5C%3A%5B4%2C%5C%3A%5Cinfty%20%5C%3A%29%5Cend%7Bbmatrix%7D)
And the Least Value of the domain is -4.
Answer:
k=6
Step-by-step explanation:
Line partition formula
1/b(x2-x1)+x1, 1/b(y2-y1)+y1
Where b is the number partitions.
We know the x values so Subsitue 17 for x2 and 2 for x1. and we know this value must equal 7.
1/b(17-2)+2=7
1/b(15)=5
1/b=1/3
b=3
so the partition is 1/3

So let find the y coordinate

So our y coordinate is 6.