Answer:
- Calcium binds to troponin C
- Troponin T moves tropomyosin and unblocks the binding sites
- Myosin heads join to the actin forming cross-bridges
- ATP turns into ADP and inorganic phosphate and releases energy
- The energy is used to impulse myofilaments slide producing a power stroke
- ADP is released and a new ATP joins the myosin heads and breaks the bindings to the actin filament
- ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, starting a new cycle
- Z-bands are pulled toward each other, shortening the sarcomere and the I-band, producing muscle fiber contraction.
Explanation:
In rest, the tropomyosin inhibits the attraction strengths between myosin and actin filaments. Contraction initiates when an action potential depolarizes the inner portion of the muscle fiber. Calcium channels activate in the T tubules membrane, releasing <u>calcium into the sarcolemma.</u> At this point, tropomyosin is obstructing binding sites for myosin on the thin filament. When calcium binds to troponin C, troponin T alters the tropomyosin position by moving it and unblocking the binding sites. Myosin heads join to the uncovered actin-binding points forming cross-bridges, and while doing so, ATP turns into ADP and inorganic phosphate, which is released. Myofilaments slide impulsed by chemical energy collected in myosin heads, producing a power stroke. The power stroke initiates when the myosin cross-bridge binds to actin. As they slide, ADP molecules are released. A new ATP links to myosin heads and breaks the bindings to the actin filament. Then ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, which starts a new binding cycle to actin. Finally, Z-bands are pulled toward each other, shortening the sarcomere and the I-band, producing muscle fiber contraction.
Answer:
Natural selection, the keystone of evolution, can switch direction in a matter of months, a novel experiment on lizards reveals.
C. Vestigial structure is the correct answer
Answer:
Integrin molecules serve as stable, permanent anchors that anchor a cell to the extracellular matrix.
Explanation:
Integrins are transmembrane protein receptors that attach the cell cytoskeleton to the extracellular matrix (ECM) in animal cells. These glycoproteins (integrins) are highly dynamic heterodimeric molecules that anchor cells in their position and transduce signals into and out of cells. Integrin-ligand binding activates signaling pathways that are involved in fundamental cellular functions including, among others, organization of the cell cytoskeleton, cell migration, regulation of the cell cycle, etc.