Answer:
lens are the answers, I hope it is right
To solve this question you need to calculate the number of the gas molecule. The calculation would be:
PV=nRT
n=PV/RT
n= 1 atm * 40 L/ (0.082 L atm mol-1K-<span>1 * 298.15K)
</span>n= 1.636 moles
The volume at bottom of the lake would be:
PV=nRT
V= nRT/P
V= (1.636 mol * 277.15K* 0.082 L atm mol-1K-1 )/ 11 atm= <span>3.38 L</span>
The noble gas is Xenon and its molar mass is 131 g/mol.
<h3>What is the molar mass of the noble gas?</h3>
The molar mass of the noble gas is determined as follows;
Let molar mass of unknown gas be M, and mass of gas be m
Density of the noble gas, ρ = 5.8 g/dm³
density = m/V
At STP;
- temperature, T = 273.15 K
- pressure, P = 1 atm
- molar gas constant, R = 0.0821 L.atmK⁻¹mol⁻¹
From ideal gas equation:
PV = nRT
where n = m/M
PV = mRT/M
M = mRT/PV
M = 0.0821 * 273.15 * 5.84/1
Molar mass of the noble gas = 131 g/mol
The noble gas is Xenon which has molar mass approximately equal to 131 g/mol.
Learn more about molar mass at: brainly.com/question/837939
#SPJ1
Explanation:
Reaction equation for the given chemical reaction is as follows.

Equation for reaction quotient is as follows.
Q = 
= 
= 0.256
As, Q > K (= 0.12)
The effect on the partial pressure of
as equilibrium is achieved by using Q, is as follows.
- This means that there are too much products.
- Equilibrium will shift to the left towards reactants.
- More
is formed.
- Partial pressure of
increases.
You can reduce wind erosion by providing a protective plant cover for the soil.