<h3>
Answer:</h3>
89.88° C
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of gold cylinder as 75 g
- specific heat of gold is 0.129 J/g°C
- Initial temperature of gold cylinder is 65°C
- Mass of water is 500 g
- Initial temperature of water is 90 °C
We are required to calculate the final temperature;
- We know that Quantity of heat is given by the product of mass, specific heat capacity and change in temperature.
<h3>Step 1: Calculate the quantity of heat absorbed by the Gold cylinder</h3>
Assuming the final temperature is X° C
Then; ΔT = (X-65)°C
Therefore;
Q = 75 g × 0.129 J/g°C × (X-65)°C
= 9.675X - 628.875 Joules
<h3>Step 2: Calculate the quantity of heat released by water</h3>
Taking the final temperature as X° C
Change in temperature, ΔT = (90 - X)° C
Specific heat capacity of water is 4.184 J/g°C
Therefore;
Q = 500 g × 4.184 J/g°C × (90 - X)° C
= 188,280 -2092X joules
<h3>Step 3: Calculate the final temperature, X°C</h3>
we know that the heat gained by gold cylinder is equal to the heat released by water.
9.675X - 628.875 Joules = 188,280 -2092X joules
2101.675 X = 188908.875
X = 89.88° C
Thus, the final temperature is 89.88° C
Steps:
Mw = w * R * T / p * V
T = 88 + 273 => 361 K
p = 975 mmHg in atm :
1 atm = 760 mmHg
975 mmg / 760 mmHg => 1.28 atm
Therefore:
= 0.827 * 0.0821 * 361 / 1.28 * 0.270
= 24.51 / 0.3456
molar mass = 70.92 g/mol
Air is mainly composed of N2 (78%), O2 (21%) and other trace gases. Now, the total pressure of air is the sum of the partial pressures of the constituent gases. The partial pressure of each gas, for example say O2, can be expressed as:
p(O2) = mole fraction of O2 * P(total, air) ----(1)
Thus, the partial pressure is directly proportional to the total pressure. If we consider a sealed container then, as the temperature of air increases so will its pressure. Based on equation (1) an increase in the pressure of air should also increase the partial pressure of oxygen.
Answer:
D
Explanation:
It states that D has oxygen, and is closer to the Sun.
Hope this helped, and please mark as Brianliest <3
Answer:
The correct answer is 0, 235 mol
Explanation:
We use the formula PV =nRT. The normal conditions of temperature and pressure are 273K and 1 atm, we use the gas constant = 0, 082 l atm / K mol:
1 atm x 5, 25l = n x 0, 082 l atm / K mol x 273 K
n= 1 atm x 5, 25l /0, 082 l atm / K mol x 273 K
n= 0, 235 mol