<u>Answer:</u>
<u>For A:</u> The equation is 
<u>For B:</u> The equation is 
<u>For C:</u> The equation is 
<u>Explanation:</u>
Alpha decay process is the process in which nucleus of an atom disintegrates into two particles. The first one which is the alpha particle consists of two protons and two neutrons. This is also known as helium nucleus. The second particle is the daughter nuclei which is the original nucleus minus the alpha particle released.

Beta decay process is defined as the process the neutrons get converted into an electron and a proton. The released electron is known as the beta particle. In this process, the atomic number of the daughter nuclei gets increased by a factor of 1 but the mass number remains the same.

<u>For A:</u> Uranium-238 emits an alpha particle
The nuclear equation for this process follows:

<u>For B:</u> Plutonium-239 emits an alpha particle
The nuclear equation for this process follows:

<u>For C:</u> Thorium-239 emits a beta particle
The nuclear equation for this process follows:

The formation of aspirin will proceed faster if acetic anhydride is used in place of acetic acid.
However, acetic anhydride will hydrolyze in the presence of water to form acetic acid, slowing down the reaction.
Answer: There are five significant figures in 865,010.
Explanation:
When a degree of accuracy is stated by each digit present in a mathematical figure then it is called a significant figure.
Rules for counting significant figures is as follows.
- Any non-zero digits and zeros present between a non-zero figure are counted. For example, 3580009 has seven significant figures.
- Trailing zeros are counted in a non-zero figure. For example, 0.00250 has three significant figures.
- Leading zeros are not counted. For example, 0.0025 has two significant figures.
So, in the given figure 865010 has five significant figures and the trailing zero will not be counted.
Thus, we can conclude that there are five significant figures in 865,010.
T₁ = 40°C + 273.15 = 313.15 Kelvin T₂ = 30°C + 273.15 = 303.15 Kelvin
Solving Gay-Lussac's Law for P₁ we get:
P₁ = P₂ • T₁ ÷ T₂ P₁ = 760 torr • 313.15 K ÷ 303.15 K P₁ = 785.07 torr
Using the calculator, we click on the P1 button.
We then enter the 3 numbers 760 313.15 and 303.15 into the correct boxes then click "CALCULATE" and get our answer of 785.07 torr.