Answer:
physical change because the gaseous water is chemically the same as the liquid
Explanation:
Matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states.
Generally, matter exists in three (3) distinct or classical phases and these are; solid, liquid and gas.
A physical change can be defined as a type of change that only affects the physical form of a chemical substance (matter) without having any effect on its chemical properties. Thus, a physical change would only affect the physical appearance and properties of a chemical substance (matter) but not its chemical properties.
This ultimately implies that, a physical change result in a change of matter from one form or phase (liquid, solid or gas) to another without a corresponding change in chemical composition.
Hence, the boiling of water is considered to be a physical change because the gaseous water is chemically the same as the liquid i.e there isn't any changes in chemical composition of water when boiling.
A 250 ml sample of saturated a g o h solution was titrated with h c l , and the endpoint was reached after 2. 60 ml of 0. 0136 m h c l was dispensed. Based on this titration, what is the k s p of a g o h <u>. Ksp=1.9×10⁻⁸</u>
<h3>What is titration?</h3>
Titration is a typical laboratory technique for quantitative chemical analysis used to calculate the concentration of a specified analyte. It is also referred to as titrimetry and volumetric analysis (a substance to be analyzed). A standard solution with a known concentration and volume is prepared as the reagent, also known as the titrant or titrator. To ascertain the concentration of the analyte, the titrant reacts with an analyte solution (also known as the titrand). The titration volume is the amount of titrant that interacted with the analyte.
A typical titration starts with a beaker or Erlenmeyer flask being placed below a calibrated burette or chemical pipetting syringe that contains the titrant and a little amount of the indicator (such as phenolphthalein).
To learn more about titration from the given link:
brainly.com/question/186765
#SPJ4
Answer:
a. 2 HgO(s) ⇒ 2 Hg(l) + O₂(g)
b. 0.957 g
Explanation:
Step 1: Write the balanced equation
2 HgO(s) ⇒ 2 Hg(l) + O₂(g)
Step 2: Convert 130.0 °C to Kelvin
We will use the following expression.
K = °C + 273.15
K = 130.0°C + 273.15
K = 403.2 K
Step 3: Calculate the moles of O₂
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 1 atm × 0.0730 L/0.0821 atm.L/mol.K × 403.2 K
n = 2.21 × 10⁻³ mol
Step 4: Calculate the moles of HgO that produced 2.21 × 10⁻³ moles of O₂
The molar ratio of HgO to O₂ is 2:1. The moles of HgO required are 2/1 × 2.21 × 10⁻³ mol = 4.42 × 10⁻³ mol.
Step 5: Calculate the mass corresponding to 4.42 × 10⁻³ moles of HgO
The molar mass of HgO is 216.59 g/mol.
4.42 × 10⁻³ mol × 216.59 g/mol = 0.957 g
Answer:
the types of chemical reaction are combination, decomposition, single replacement, double replacement, combustion
Answer:
The 3R rule states that Radial cracks form a Right angle on the Reverse side of the force. This rule enables an examiner to determine readily the side on which a window or pane of glass was broken.
I hope it's helpful!