Answer:
v ≈ 4.47
Explanation:
The Formula needed = <u>KE = </u>
<u> m v²</u>
<u></u>
Substitute with numbers known:
2000J =
× 200kg × v²
Simplify:
÷100 ÷100 (Divide by 100 on both sides)
2000J = 100 × v²
= v²
20 = v²
√ √ (Square root on both sides)
√20 = √v²
4.472135955 = v (Round to whatever the question asks)
v ≈ 4.47 (I rounded to 2 decimal places or 3 significant figures, as that is what it usually is)
Answer:
Water-lifting devices are used to lift water to a height that allows users easy access to water. ... Other devices, such as the air-lift pump, are not included because they are not applicable to drinking-water supply systems. 4.2 Rope and bucket1. 4.2.1 The technology. This device is mainly used with hand-dug wells.
Answer: 2.83 minutes
Explanation:
It is understood that trains are approaching. That is, they have speeds of equal magnitude but opposite. When train A travels x meters northbound, then train B travels the same distance southbound.
Therefore trains approach at a speed of:

Then:

Where x is the distance between the trains

So the time in which both trains meet is:

This is:

<em />
<em>How long will it be before they reach one another ?</em>
<h3>2.83 minutes</h3>
Answer:
C
Explanation:
The law of conservation of energy determines that energy cannot be created or destroyed.
Answer: 4.29 m/s
Explanation:
Given
Depth of the well, s = 8.23 m
Time taken to reach the well, t = 0.93 s
Speed of sound = 343 m/s
To solve this, we would be using one of l the laws of motion.
S = ut + 1/2gt², where
S = depth of the well
u = initial speed of toss
g = acceleration due to gravity
t = time taken to reach the well
We would then have
8.23 = 0.93 u + 1/2 * 9.8 * 0.93²
8.23 = 0.93 u + 4.9 * 0.8649
8.23 = 0.93 u + 4.23801
0.93 u = 8.23 - 4.23801
0.93 u = 3.99199
u = 3.99199 / 0.93
u = 4.29 m/s
Therefore, the initial speed of the coin is 4.29 m/s