Answer:
AAAAAAAAHHHDHSFJSBDKFANEDASNXDEHAHDBWEEEEHJDBHBAH
AAHHH YES THEY DOO AAAHHH EEHSFJWEHASAAAAHJEHER
Answer:
b. a lens does not focus all colors of light to the same place.
Explanation:
Chromatic aberration is a defect of a lens. In this defect, the lens is unable to focus the different wavelengths of the light on a single focal point. It is also known as chromatic distortion and color fringing. It is caused by the dispersion of light while passing through a lens. As a result, the image might become blurred and different colors are observed around its edges. It can be corrected by the use of a combination of converging and diverging lenses.
Hence, the correct option will be:
<u>b. a lens does not focus all colors of light to the same place.</u>
The magnitude of the electric field will be the greatest at the point where it is closest,to its charges.
Yes ,there is a point where the field will be zero.
what is an electric field?
The region where an electrostatic force is experienced by a charged entity is known as the electric field at a point.
As per the principle of field lines and vectors,where the field lines are in a close manner together,the field will be strongest.However ,where the field lines are in a manner apart,the field will be the weakest.
As per the concept,the electric field will be the greatest at the point where it is closest to its charges.For like charges, the electric field will be zero closer to the smaller charge and will be along the line joining the two charges. For opposite charges of equal magnitude, there will not be any zero electric fields.
Thus,we can conclude that there will be a point where the electric field is zero
learn more about electric field from here: brainly.com/question/28197462
#SPJ4
When light passes from one medium to another, part of it continues on
into the new medium, while the rest of it bounces away from the boundary,
back into the first medium.
The part of the light that continues on into the new medium is <em>transmitted</em>
light. Its forward progress at any point in its journey is <em>transmission</em>.
Its direction usually changes as it crosses the boundary. The bending is <em>
refraction</em>.
The part of the light that bounces away from the boundary and heads back
into the first medium is <em>reflected</em> light. The process of bouncing is <em>reflection</em>.