The answer for this question is negative externality
The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the first object has a mass of

, while the second "object" is the Earth, with mass

. The distance of the object from the Earth's center is

; if we substitute these numbers into the equation, we find the force of gravity exerted by the Earth on the mass of 0.60 kg:
The correct answer is option B, representational
All the painters in Peale family were involved in paintings which represent the day today life activities or were portraits or mimic some natural forms.
Charles Willson Peale , the head of the Peale family was known for painting sixty portraits of the first American president, George Washington. He also painted portraits of portraits of notable people of the society such as Benjamin Franklin, Thomas Jefferson etc.
Most of the paintings of peale family were based on the theme of family, art and science. Six of Peale’s son were known for their renaissance paintings. His oldest son Raphelle was known for still life paintings.
Titian Ramsay Peale, Charles’ youngest son was a naturalist painter.
Periodic time is the time taken for one complete oscillation by a body in circular motion. In this case the merry-go round takes 2 minutes to cover 15 complete oscillations. 2 Minutes = 120 seconds
Hence, 15 oscillations takes 120 secs
thus 1 oscillation takes 120/15 = 8 seconds
therefore the period of the merry-go-round = 8 seconds
Answer:
45 s .
Explanation:
The accelerator will first accelerate , then move with uniform velocity and at last it will decelerate to rest .
displacement s = ?
acceleration a = 1 m /s²
Final speed v = 5 m/s
initial speed u = 0
v² = u² + 2as
5² = 0 + 2 x 1 x s
s = 12.5 m
B) Let time of acceleration or deceleration be t
v = u + a t
5 = 0 + 1 t
t = 5 s
Similarly displacement during deceleration = 12.5 m
Total distance during uniform motion = 200 - ( 12.5 + 12.5 ) = 175 m .
velocity of uniform motion = 5 m /s
time during which there was uniform velocity = 175 / 5 = 35 s
Total time = 5 + 35 + 5 = 45 s .