When pure HA is added to the buffer, the buffer component ratio and the pH decrease.
<h3>State and explain the relative change in the pH and in the buffer-component concentration ratio, [NaA]/[HA] for the dissolve of pure HA in the buffer.</h3>
When pure HA is added to the buffer, the buffer component ratio and the pH decrease. The added HA increases the concentrations of NA and HA. However, there is a greater relative increase in the concentration of HA. Hence, the ratio of [NaA]/[HA] decreases, causing the solution to become more acidic.
The capacity of a buffer to withstand pH change is measured. The concentration of the buffer's components namely, the acid and its conjugate base determine this ability. Greater buffer capacity is associated with higher buffer concentration.
To learn more about buffer-component, Visit:
brainly.com/question/9542245
#SPJ4
Answer:
a) 300K
b) 373K
c) 273K
Explanation:
to go from °C to K all you have to do is add 273.
Answer:
The volume of the gas will be 78.31 L at 1.7 °C.
Explanation:
We can find the temperature of the gas by the ideal gas law equation:

Where:
n: is the number of moles
V: is the volume
T: is the temperature
R: is the gas constant = 0.082 L*atm/(K*mol)
From the initial we can find the number of moles:

Now, we can find the temperature with the final conditions:

The temperature in Celsius is:

Therefore, the volume of the gas will be 78.31 L at 1.7 °C.
I hope it helps you!
Explanation:
develop a short message which you will deliver to the people in this community about application of chemistry in everyday life