Use the Pythagoras Theorem in the corresponding right angled triangles.
1. 200 Parsecs, 652.312 Light years 2. 8 Parsecs, 26.09248 Light years ; Use this formula, p=1/P(parallax), to solve the equation. Then multiply 3.26156 (light years per parsec) by the number of parsecs.
1. p= 1/0.005 = 200*3.26156 = 652.312
200 Parsecs, 652.312 Light years
2. p=1/0.125 = 8*3.26156 = 26.09248
8 Parsecs, 26.09248 Light years
Answer:
whats the question?
Step-by-step explanation:
Complete the square to rewrite the quadratic:
2 <em>x</em>² + 3 <em>x</em> + 5 = 2 (<em>x</em>² + 3/2 <em>x</em>) + 5
... = 2 (<em>x</em>² + 3/2 <em>x</em> + 9/16 - 9/16) + 5
... = 2 (<em>x</em>² + 3/2 <em>x</em> + (3/4)²) + 5 - 9/8
... = 2 (<em>x</em> + 3/4)² + 31/8
Any real number squared becomes non-negative, so the quadratic expression has a minimum value of 31/8, which is greater than 0, and so there are no (real) <em>x</em> for which <em>y</em> = 0.