Answer:
Step-by-step explanation:
12) Decrease in miles = 22,250 - 14,500 = 7750 miles

= 34.83%
13) Decrease in speed = 40 - 25 = 15 mph

= 37.5%
The distribution function of the univariate random variable x is continuous at x if and only if , F (x) = P (X ≤ x)
Continuous univariate statistical distributions are functions that describe the likelihood that a random variable, say, X, falls within a given range. Let P (a Xb) represent the probability that X falls within the range [a, b].
A numerically valued variable is said to be continuous if, in any unit of measurement, whenever it can take on the values a and b. If the random variable X can assume an infinite and uncountable set of values, it is said to be a continuous random variable.
If X can take any specific value on the real line, the probability of any specific value is effectively zero (because we'd have a=b, which means no range). As a result, continuous probability distributions are frequently described in terms of their cumulative distribution function, F(x).
To learn more about univariated data
brainly.com/question/13415579
#SPJ4
Step-by-step explanation:
Since it remains only 1 sweet, we can subtract it from the total and get the amount of sweets distributed (=1024).
As all the sweets are distributed equally, we must divide the number of distributed sweets by all its dividers (excluding 1024 and 1, we'll see later why):
1) 512 => 2 partecipants
2) 256 => 4 partecipants
3) 128 => 8 partecipants
4) 64 => 16 partecipants
5) 32 => 32 partecipants
6) 16 => 64 partecipants
7) 8 => 128 partecipants
9) 4 => 256 partecipants
10) 2 => 512 partecipants
The number on the left represents the number of sweets given to the partecipants, and on the right we have the number of the partecipants. Note that all the numbers on the left are dividers of 1024.
Why excluding 1 and 1024? Because the problem tells us that there remains 1 sweet. If there was 1 sweet for every partecipant, the number of partecipants would be 1025, but that's not possible as there remains 1 sweet. If it was 1024, it wouldn't work as well because the sweets are 1025 and if 1 is not distributed it goes again against the problem that says all sweets are equally distributed.