1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudik [331]
3 years ago
15

PLS HELP Complete the table so that the numbers in each column represent the coordinates of a point on the graph

Mathematics
1 answer:
Natasha2012 [34]3 years ago
4 0

Answer:

1 is 1/2 5 is 2 1/2 and 7 would be 3 1/2

Step-by-step explanation:

You might be interested in
Find cot theta if 180° < theta < 270° and cos theta = - sqrt 3/2
avanturin [10]

Answer:

cot theta = -√3

Step-by-step explanation:

we are given that  cos theta = - √3/2 within the range 180° < theta < 270° and

since cos theta = adj/hyp

adj = - √3

hyp = 2

Get the opposite using the pythagoras theorem

hyp^2 = opp^2 + adj^2

2² = opp² + (-√3)²

4 = opp² + 3

opp² = 4-3

opp² = 1

opp = 1

tan theta = opp/adj

tan theta = - 1/√3

Recall that cot theta = 1/tan theta

cot theta = 1/(-1/√3)

cot theta = -√3

8 0
3 years ago
Solve by completing the square, please help​
Talja [164]

Answer:

 x = 4 + √ 38

Step-by-step explanation:

6 0
2 years ago
Find the exact values of sin2 θ for cos θ = 3/18 on the interval 0° ≤ θ ≤ 90°
mote1985 [20]

Answer:

sin(2\theta)=\frac{\sqrt{35} }{18}

Step-by-step explanation:

Recall the formula for the sine of the double angle:

sin(2\theta)=2*sin(\theta)*cos(\theta)

we know that cos(\theta)=\frac{3}{18}, and that \theta is in the interval between 0 and 90 degrees, where both the functions sine and cosine are non-negative numbers. Based on such, we can find using the Pythagorean trigonometric property that relates sine and cosine of the same angle, what sin(\theta) is:

cos^2(\theta)+sin^2(\theta)=1\\sin^2(\theta)=1-cos^2(\theta)\\sin(\theta)=\sqrt{1-cos^2(\theta)} \\sin(\theta)=\sqrt{1-(\frac{3}{18} )^2}\\sin(\theta)=\sqrt{1-\frac{9}{324} }\\sin(\theta)=\sqrt{\frac{324-9}{324} }\\sin(\theta)=\sqrt{\frac{315}{324} }\\\\sin(\theta)=\frac{3}{18}\sqrt{35 }

With this information, we can now complete the value of the sine of the double angle requested:

sin(2\theta)=2*sin(\theta)*cos(\theta)\\sin(2\theta)=2*\frac{3}{18} \,\sqrt{35} \,\frac{3}{18}\\sin(2\theta)=\frac{2*3*3}{18*18}\,\sqrt{35} \\sin(2\theta)=\frac{\sqrt{35} }{18}

6 0
3 years ago
The graph of f(x)=ax^2 is narrower than the graph of g(x)=dx^2 when a&lt;d
Lynna [10]

Answer:

Step-by-step explanation:

as given in question that a > 0 so

if we put a=1

we get g(x) = f(x)

now put a =2

we get

g(x) = 2 f(x)

here we can see that g(x) would always be greater than or equals to f(x)

so we can say that the graph of g(x) will never be narrower than graph of g(x)

4 0
3 years ago
Solve and model 7/10-3/10
sergij07 [2.7K]
Hello,

\frac{7}{10} -  \frac{3}{10} = 2/5 

Solution.

<span>\frac{7}{10} - \frac{3}{10}= The denominators are the same so you subtract the numerator. Your answer should be </span>\frac{4}{10}  simplified your answer is \frac{2}{5}.

Have A Good Day!
7 0
3 years ago
Other questions:
  • Which is greater 0.75 or 0.9
    11·2 answers
  • What is 82.2% of 50?
    11·2 answers
  • What are the coordinates of the turning point for the function f(x) = (x+3)^3 + 1
    10·2 answers
  • Benny is 12 years old. He is currently 200% of his sisters age. What percent of Benny's age will his sisters age be in 4 years?
    10·1 answer
  • Manny is an online student who currently owns an older car that is fully paid for. He drives, on average, 110 miles per week to
    13·1 answer
  • From 145 pounds to 132 what is the percent decrease
    9·1 answer
  • What is the answer for 17x&gt; -7
    7·1 answer
  • Pls help for this pre calc question 25 points rewarded!
    8·1 answer
  • Explain how to find the missing side of a right triangle when given an acute angle and one side
    8·2 answers
  • Find the volume of these solid<br><br>20mm<br>3.7mm<br>41mm​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!