m = 
add
to both sides
m = -
+ 
we require a common denominator for both fractions before adding
multiply numerator/denominator of -
by 2
multiply the numerator/denominator of
by 3
= -
+
= 
In the given graph, the two lines intersects at

And intersection point is that point , where the y values of the two graphs are equal .
That is

And at x=-2, the y values are equal. THat is

So the correct option is D.
The domain is all real numbers except -6 and 0. Hence, domain D: {x ∈ ℝ| x ≠ –6, 0}
Hence the range is all real numbers except -3 and 3. Hence, range R: (–∞, –3) ∪ (3, ∞)
Given the following functions:

First we need to get the composite function f(g(x))

Get the domain
The domain the values of x for which the function exists. The function cannot exists at when x = -6 and x = 0
- Hence the domain is all real numbers except -6 and 0. Hence, domain D: {x ∈ ℝ| x ≠ –6, 0}
The range is the value of y for which the function exists. The function cannot exists at when x = -6 and x = 0
- Hence the range is all real numbers except -3 and 3. Hence, range R: (–∞, –3) ∪ (3, ∞)
Learn more here: brainly.com/question/20838649
Answer:
I want to say it'd be (-3,3)
I hope this helps, if it's incorrect i'm sorry i can try and fix it if it's incorrect.
Answer:
x= 3, y=0, z= 1
Step-by-step explanation:
Let's label the 3 given equations first.
2x +3y +4z= 10 -----(1)
3x +2y -4z= 5 -----(2)
x +4y +2z= 5 -----(3)
(1) +(2):
<em>This</em><em> </em><em>is</em><em> </em><em>to</em><em> </em><em>eliminate</em><em> </em><em>the</em><em> </em><em>z</em><em> </em><em>term</em><em>.</em>
2x +3y +4z +3x +2y -4z= 10 +5
5x +5y= 15
<em>Divide</em><em> </em><em>by</em><em> </em><em>5</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>:</em>
x +y= 3 -----(4)
(3) ×2:
2x +8y +4z= 10 -----(5)
(2) +(5):
<em>This</em><em> </em><em>is</em><em> </em><em>to</em><em> </em><em>eliminate</em><em> </em><em>z</em><em> </em><em>term</em><em>.</em>
3x +2y -4z + 2x +8y +4z= 5 +10
5x +10y= 15
<em>Divide</em><em> </em><em>by</em><em> </em><em>5</em><em> </em><em>throughout</em><em>.</em>
x +2y= 3 -----(6)
(6) -(4):
x +2y -(x +y)= 3 -3
x +2y -x -y= 0
y= 0
subst. y=0 into (4):
x +0= 3
x= 3
subst. x=3, y=0 into (3):
3 +4(0) +2z= 5
3 +2z= 5
2z= 5 -3
2z= 2
z= 2÷2
z= 1