1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
4 years ago
12

3(3x+2)<8(x+2)<6(5x-12) =

Mathematics
2 answers:
iren [92.7K]4 years ago
8 0
3(3x+2) < 8(x+2) < 6(5x-12)\\\\9x+6 < 8x+16 < 30x-72\\\\\#1\\9x+6 < 8x+16\ \ \ \ \ |subtract\ 6\ from\ both\ sides\\9x < 8x+10\ \ \  \ \ \ \ |subtract\ 8x\ from\ both\ sides\\x < 10\\\\\#2\\8x+16< 30x-72\ \ \ \ \ \ \ \ |subtract\ 16\ from\ both\ sides\\8x < 30x-88\ \ \  \ \ \ \  \ \ |subtract\ 30x\ from\ both\ sides\\-22x < -88\\22x > 88\ \ \ \ \ \ \ \ \ |divide\ both\ sides\ by\ 22\\x > 4\\\\From\ \#1\ \cap\ \#2\ we\ have\ 4 < x < 10\Rightarrow x\in(4;\ 10)
kolezko [41]4 years ago
7 0
3(3x+2) < 8x + 16 => x < 10 
8x + 16 < 30x - 72  => 22x > 88 => x > 4
solution is  4  < x < 10
 
You might be interested in
Please help me with the screenshot.
erma4kov [3.2K]

Refer to the attachment for the answer

Answer is inside the orange boxes with green ticks on them

Refer to the attachment for the answer

Answer is inside the orange boxes with green ticks on them

x = 0.7 when y = 0.6

            OR

x = 0.6 when y = 0.7

3 0
3 years ago
Comprás 4 libras de arroz con 10$.¿Cuántos necesitas para 14 libras?​
Fofino [41]

Answer:

Alegría puede comprar 16.667 libras de arroz y 12.5 libras de azúcar con 20 pesos.

Step-by-step explanation:

Sabemos que una libra de arroz cuesta 0.60 pesos, mientras que una de azúcar cuesta 0.80 pesos. Un enfoque posible es determinar cuantas libras de arroz se obtiene por el mismo dinero para adquirir una libra de azúcar a través de una regla de tres simple:

Esto quiere decir que por cada tres libras de azúcar, se compra cuatro libras de arroz. Ahora, la cantidad de alimentos que puede comprar Alegría queda restringida al dinero disponible (20 pesos) y se describe por la siguiente ecuación:

(Ec. 1)

Donde:

- Cantidad de arroz, medida en libras.

- Cantidad de azúcar, medida en libras.

Además, la siguiente ecuación se deriva de la regla de tres del inicio del problema:

(Ec. 2)

Si aplicamos (Ec. 2) en (Ec. 1) y resolvemos la ecuación resultante, tenemos que:

De (Ec. 2) tenemos que la cantidad de arroz es:

En consecuencia, Alegría puede comprar 16.667 libras de arroz y 12.5 libras de azúcar con 20 pesos.

3 0
3 years ago
Need help with math.
nikdorinn [45]
4 / (1/4 - 5/2) 

4 / (1/4 -10/4)

4 / (-9/4)

4 x (-4/9) = -16/9
8 0
3 years ago
For each of the following expressions rewrite it in a way that would make it easier to simplify. State whether you used the asso
Elis [28]
1. 15(10 - 2)....distribute....150 - 30 = 120
2. (24 + 18) + (12 + 6).....commutative....(24 + 6) + (12 + 18) = 30 + 30 = 60
3. 5 * 13 * 2.....commutative.....5 * 2 * 13 = 10 * 13 = 130
4. 94 + 17 + 53 + 6....commutative...94 + 6 + 17 + 53 = 100 + 70 = 170
5. 25(14) ...distribute..25 * 10 + 25 * 4 = 250 + 100 = 350
6. 25 * (4 * 17)...associative....(25 * 4) * 17 = 100 * 17 = 1700
3 0
4 years ago
Determine if diverges, converges, or converges conditionally.
TEA [102]

The given series is conditionally convergent. This can be obtained by using alternating series test first and then comparing the series to the harmonic series.

<h3>Determine if diverges, converges, or converges conditionally:</h3>

Initially we need to know what Absolute convergence and Conditional convergence,

If \sum|a_{n} | → converges, and \sum a_{n} → converges, then the series is Absolute convergence

If \sum|a_{n} | → diverges, and \sum a_{n} → converges, then the series is Conditional convergence

First use alternating series test,

\lim_{k \to \infty} \frac{k^{5} +1}{k^{6}+11 } = \lim_{n \to \infty} \frac{5}{6k} = 0,

The series is a positive, decreasing sequence that converges to 0.

Next by comparing the series to harmonic series,

\sum^{\infty} _{k=2}|(-1)^{k+1} \frac{k^{5} +1}{k^{6}+11 }|=\sum^{\infty} _{k=2}\frac{k^{5} +1}{k^{6}+11 } ≈  \sum^{\infty} _{k=2}\frac{1}{k} = 0

This implies that the series is divergent by comparison to the harmonic series.

First we got that the series is converging and then we got the series is divergent. Therefore the series is conditionally convergent.

\sum|a_{n} | → diverges, and \sum a_{n} → converges, then the series is Conditional convergence.

Hence the given series is conditionally convergent.

Learn more about conditionally convergent here:

brainly.com/question/1580821

#SPJ1

7 0
2 years ago
Read 2 more answers
Other questions:
  • A jar of coins contains dimes, pennies, and quarters. There are 220 pennies in the jar. There are 3 quarters for every 4 pennies
    7·2 answers
  • Edgar accumulated $5,000 in credit card debt. If the interest is 20% per year and he does not make any payment for 2 years. How
    15·2 answers
  • Which situation involves an
    11·2 answers
  • In a survey of a group of people, it was found that 70% of
    11·2 answers
  • PLEASE HELP ME!
    6·1 answer
  • Pllsssssss helpppp meeee
    8·1 answer
  • Plz help with my math!
    9·2 answers
  • U6 D2 Identify the Dependent Quantity
    14·1 answer
  • Which numbers are solutions to the inequality -3x-3&lt;_ 6<br> ? Check all of the boxes that apply.
    12·1 answer
  • Two regular 6-sided dice are tossed. Compute the probability that the sum of the pips on the upward faces of the 2 dice is the f
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!