1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
4 years ago
10

Use trigonometric identities to simplify the expression. 1/cot^2(B) +1.....the B represents the symbol of beta.

Mathematics
1 answer:
Reil [10]4 years ago
4 0

1 \div ( \cot ^{2} ( \beta )  + 1) \\  = 1  \div  \ \csc  ^{2} ( \beta )  \\  =  \sin^{2} ( \beta )

As

cosec^1/2 (B)- cot^1/2(B)=1

so cosec^1/2(B)= 1+ cot^1/2 (B)

You might be interested in
Use the Distributive Property​ to simplify the expression<br> 8(​x​ - 1)
san4es73 [151]

Answer:

8x + 8

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Versity City Geometry 1.2 - CR (9/17)
Reil [10]

Answer:

(x+3)^{2}+(y+5)^{2}=36

Step-by-step explanation:

we know that

The equation of a circle in standard form is equal to

(x-h)^{2}+(y-k)^{2}=r^{2}

In this problem we have

(h,k)=(-3,-5)

r= 6\ units

substitute

(x+3)^{2}+(y+5)^{2}=6^{2}

(x+3)^{2}+(y+5)^{2}=36

8 0
3 years ago
Use the Pohlig–Hellman algorithm (Theorem 2.32) to solve the discrete logarithm problem gx = a in Fp in each of the following ca
qaws [65]

Answer:

(a) The solution is x=47.

(b) The solution is x=223755.

(c) The solution is x=33703314.

(d) The solution is x=984414.

Step-by-step explanation:

(a) Step 1 is to solve  

             

q    e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2   4        265                   250                 Calculation I

3   3       374                    335                  Calculation II

Now Solving for calculation I:

x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 2^{4} )≡0x_{0}+2x_{1} +4x_{2} +8x_{3} (mod\ 2^{4} )

Solve (265)x=250(mod 433) for x0,x1,x2,x3.

x0:(26523)x0=25023(mod 433)⟹(432)x0=432⟹x0=1

x1:(26523)x1=(250×265−x0)22(mod 433)=(250×265−1)22(mod433)=(250×250)22(mod 433)⟹(432)x1=432⟹x1=1

x2:(26523)x2=(250×265−x0−2x1)21(mod 433)=(250×265−3)22(mod 433)=(250×195)21(mod 433)⟹(432)x2=432⟹x2=1

x3:(26523)x3=(250×265−x0−2x1−4x2)20(mod 433)=(250×265−7)20(mod 433)=(250×168)20(mod 433)⟹(432)x3=432⟹x3=1

Thus, our first result is:

        x≡x0+2x1+4x2+8x3(mod24)≡1+2+4+8(mod24)≡15(mod24)

Now for Calculation II:

        x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 3^{3} )≡ x_{0}*0+3x_{1} +9x_{2}  (mod3^{3})

 

Solve (374)x=335(mod 433) for x0,x1,x2.

x0:(37432)x0=33532(mod 433)⟹(234)x0=198⟹x0=2. Note: you only needed to test x0=0,1,2, so it is clear which one x0 is.

x1:(37432)x1=(335×374−x0)31(mod 433)=(335×374−2)31(mod 433)=(335×51)31(mod 433)=1(mod 433)⟹(234)x1=1(mod 433)⟹x1=0

x2:(37432)x2=(335×374−x0−3x1)30(mod 433)=(335×374−2)30(mod 433)=(335×51)30(mod 433)=198(mod 433)⟹(234)x2=198(mod 433)⟹x2=2. Note: you only needed to test x2=0,1,2, so it is clear which one x2 is.

Thus, our second result is:

           x≡x0+3x1+9x2(mod 33)≡2+0+9×2(mod 33)≡20(mod 33)

Step 2 is to solve

x ≡15 (mod 24 ),

x ≡20 (mod 33 ).

The solution is x=47.

(b) Step 1 is to solve

q       e              h = g^{ (p-1)} /q     b = a^{(p-1)} /q        h^{y} = b

2       10            4168                   38277              523

3        6              674719               322735           681  

h^{y} = b is calculated using same steps as in part(a).

Step 2 is to solve

x ≡ 523 (mod 210 ),

x ≡ 681 (mod 36 ).

The solution is x=223755 .

(c) Step 1 is to solve

q             e         h = g^{ (p-1)} /q     b = a^{(p-1)} /q                h^{y} = b

2             1         41022298               1                             0

29           5        4                              11844727              13192165

 

In order to solve the discrete logarithm problem modulo 295 , it is best to solve  it step by step. Note that 429 = 18794375 is an element of order 29 in F∗p . To  avoid notational confusion, we use the letter u for the exponents.

¢294

First solve 18794375u0 = 11844727

                                        = 987085.

The solution is u0 = 7.

The value of u so far is u = 7.

¢293

Solve 18794375u1 = 11844727·4−7

                               = 8303208.

The solution is u1 = 8.

The value of u so far is u = 239 = 7 + 8 · 29.

¢292

Solve 18794375u2 = 11844727 · 4−239

                                = 30789520.

The solution is

u2 = 26. The value of u so far is u = 22105 = 7 + 8 · 29 + 26 · 292 .

¢291

Solve 18794375u3 = 11844727 · 4−22105

                               = 585477.

The solution is

u3 = 18. The value of u so far is u = 461107 = 7 + 8 · 29 + 26 · 292 + 18 · 293 .

¢290

Solve 18794375u4 = 11844727 · 4−461107

                                = 585477.

The solution is

u4 = 18. The final value of u is u = 13192165 = 7 + 8 · 29 + 26 · 292 + 18 · 293 +  18 · 294 , which is the number you see in the last column of the table.

 

Step 2 is to solve

x ≡ 13192165 (mod 295 ).

x ≡ 0 (mod 2),

The solution is x=33703314 .

(d) Step 1 is to solve

q               e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2               1           1291798           1                       0

709           1          679773             566657           322

911             1          329472            898549           534

To solve the DLP’s modulo 709 or 911, they can be easily solved by an exhaustive search on a computer, and a collision  algorithm is even faster.

Step 2 is to solve

x ≡ 0 (mod 2),

x ≡ 322 (mod 709),

x ≡ 534 (mod 911).

The solution is x=984414

3 0
3 years ago
Which of these is a mathematical expression?
Ainat [17]

Answer:

4 - 3r

Step-by-step explanation:

D is just a statement of words, completely unrelated to math. C is an equation since because of the product and equal sign. hope that makes sense.

8 0
2 years ago
Read 2 more answers
At the beach roger built a sand castle that was 2and 2/8 feet high if he added a flag that was 2 and 1/4 feet high what is the t
kvasek [131]

let's firstly convert the mixed fractions to improper fractions and then sum them up.

\bf \stackrel{mixed}{2\frac{2}{8}}\implies \cfrac{2\cdot 8+2}{8}\implies \stackrel{improper}{\cfrac{18}{8}}~\hfill \stackrel{mixed}{2\frac{1}{4}}\implies \cfrac{2\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{9}{4}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{18}{8}+\cfrac{9}{4}\implies \stackrel{\textit{using the LCD of 8}}{\cfrac{(1)18+(2)9}{8}}\implies \cfrac{18+18}{8}\implies \cfrac{36}{8}\implies \cfrac{9}{2}\implies 4\frac{1}{2}

7 0
3 years ago
Other questions:
  • A package weighs 96 ounces what's the weight of the packet in pounds?
    13·2 answers
  • 9. Raymond and Rose were working with exponents. Part A: Raymond claims that 5^5 * 5^2 = 5^3. Rose argues that 5^5 * 5^2 = 5^7.
    9·1 answer
  • Given a right triangle, find the measures of all the angles, in degrees, if one angle is a right angle and the measurement of th
    12·1 answer
  • E= hf-w
    12·1 answer
  • How can you find the area of a triangle using the Law of Sines?
    9·1 answer
  • What is the equation of the line that passes through the point (12,-2)? Please help
    8·1 answer
  • CAN SOMEONE HELP ME ASAP??? THANK YOU.
    11·1 answer
  • There is a closed carton of eggs in Mai's refrigerator. The carton contains e eggs and it can hold 12 eggs. What does the inequa
    12·1 answer
  • CAN SOMEONE GIVE ME A SUPER SIMPLE ANSWER TO THIS!!??
    5·1 answer
  • At the beginning of the season, Mike had to remove 4 lemon trees from his farm. Each of the remaining trees produced 150 lemons
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!