The correct students about the function are;
B: The function represented by the table has a greater rate of change.
C: The function y = 7x + 8 has the greatest y-intercept.
<h3>How to Interpret the Function Table?</h3>
We are looking at the equation;
y = 7x + 8
The general equation of a line in slope intercept form is;
y = mx + c
where;
m is slope
c is y-intercept
Thus, the slope of the given equation is 7 while the y-intercept is 8.
From the table, the rate of change which is also is simply the slope from the formula;
m = (y₂ - y₁)/(x₂ - x₁)
m = (32 - 16)/(4 - 2)
m = 8
Looking at the given options, only options that are correct are Options B and C.
Read more about Function Table at; brainly.com/question/9404442
#SPJ1
Answer:
A
Step-by-step explanation:
The total distance traveled by the robot from t=0 to t=9 is 1422 units
Integration is a way in which smaller components are brought together in pieces to form a whole. Integration can be used in finding areas, volumes and so on.
Given that the position s(t) at any time t is given by the function:
s(t)=9t²−90t+4
The total distance traveled by the robot from t=0 to t=9 can be gotten by integrating the position function within the limits 0< t < 9
Therefore:
![Total\ distance = \int\limits^9_0 {s(t) \, dt \\\\Total\ distance = \int\limits^9_0 {(9t^2-90t+4) \, dt\\\\Total\ distance = [3t^3-45t+4t]_0^9\\\\Total\ distance=-1422\ units](https://tex.z-dn.net/?f=Total%5C%20distance%20%3D%20%5Cint%5Climits%5E9_0%20%7Bs%28t%29%20%5C%2C%20dt%20%5C%5C%5C%5CTotal%5C%20distance%20%3D%20%5Cint%5Climits%5E9_0%20%7B%289t%5E2-90t%2B4%29%20%5C%2C%20dt%5C%5C%5C%5CTotal%5C%20distance%20%3D%20%5B3t%5E3-45t%2B4t%5D_0%5E9%5C%5C%5C%5CTotal%5C%20distance%3D-1422%5C%20units)
The total distance is 1422 units
Find out more at: brainly.com/question/22008756
Since all of these numbers have the same variable they can all be added up to get a sum of 10a which is its simplified form.
Given:
The vertex of a quadratic function is (4,-7).
To find:
The equation of the quadratic function.
Solution:
The vertex form of a quadratic function is:
...(i)
Where a is a constant and (h,k) is vertex.
The vertex is at point (4,-7).
Putting h=4 and k=-7 in (i), we get


The required equation of the quadratic function is
where, a is a constant.
Putting a=1, we get

![[\because (a-b)^2=a^2-2ab+b^2]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28a-b%29%5E2%3Da%5E2-2ab%2Bb%5E2%5D)
Therefore, the required quadratic function is
.