Answer:
14
Step-by-step explanation:
When there are 2 -, they both create a +. the brackets are removed and you get 4--10, which is equal to 4+10 which = 14
His name is in the name of the name in the name of the name in the name of the name
Linear programming which shows the best investment strategy for the client is Max Z=0.12I +0.09B and subject to constraints are :I+ B<=25000,
0.005 I +0.004B<=250.
Given maximum investment client can make is $55000, annual return= 9%, The investment advisor requires that at most $25,000 of the client's funds should be invested in the internet fund. The internet fund, which is the more risky of the two investment alternatives, has a risk rating of 5 per thousand dollars invested. the blue chip fund has a risk rating of 4 per thousand dollars invested.
We have to make a linear programming problem.
Let
I= Internet fund investment in thousands.
B=Blue chip fund investment in thousands.
Objective function:
Max Z=0.12I+0.09B
subject to following constraints:
Investment amount: I+ B<=25000
Risk Rating: 5/100* I+4/100*B<=250 or 0.005 I +0.004B<=250
I,B>=0.
Hence the objective function is Max Z=0.12 I+ 0.09 B.
Learn more about LPP at brainly.com/question/25828237
#SPJ4
Answer:
q12 is 8
q13 is 81
Step-by-step explanation:
100*6 =600 / 75 = 8
90*72 = 6480 / 80 = 81
We are given: On january 1, 2000 initial population = 67,255.
Number of people increase each year = 2935 people.
Therefore, 67,255 would be fix value and 2935 is the rate at which population increase.
Let us assume there would be t number of years after year 2000 and population P after t years is taken by function P(t).
So, we can setup an equation as
Total population after t years = Number of t years * rate of increase of population + fix given population.
In terms of function it can be written as
P(t) = t * 2935 + 67255.
Therefore, final function would be
P(t) = 2935t +67255.
So, the correct option is d.P(t) = 67255 + 2935t.