Answer:
T = 2.82 seconds.
The frequency 
Amplitude A = 25.5 cm
The maximum speed of the glider is 
Explanation:
Given that:
the time taken for 11 oscillations is 31 seconds ;
SO, the time taken for one oscillation is :

T = 2.82 seconds.
The formula for calculating frequency can be expressed as :



The amplitude is determined by using the formula:

The limits that the spring makes the oscillations are from 10 cm to 61 cm.
The distance of the glider is, d = (61 - 10 )cm = 51 cm
Replacing 51 for d in the above equation

A = 25.5 cm
The maximum speed of the glider is:

where ;






Answer:
a) We could not see it at all.
Explanation:
The most distant object that can be seen is the andromeda galaxy, which we may have a slight view of. The andromeda galaxy is a large galaxy that along with the previous two is also part of the local group. Spiral-type galaxy that is approximately 250,000 light years in diameter (more than twice the diameter of the Milky Way!) And is about 2.9 million light years away from our galaxy. Because of its distance, we have difficulty visualizing this galaxy, we would have this difficulty even if the andromeda galaxy was in the center of the Milky Way, but maintaining its current distance. That is, even if the andromeda galaxy were located in the same direction in space as the center of the Milky Way (but still at its current distance), we could not see it at all.
Answer:
Static friction
Explanation:
When there is contact between two surfaces and there is no movement, there is static friction. So, if we have a book that rests on a wooden table, we have an example of Static friction, where this force avoids the movement of the book.
Answer:
<h3>1/16</h3>
Explanation:
According to the coulombs law, the force existing vetween the ions is expressed as;
F = kQq/r² .... 1
Q and q are the ions
r is the distance between the ions
If the distance between the ion is quadrupled, then;
F2 = kQq/(4r)²
F2 = kQq/16r² ... 2
Divide equation 2 by 1;
F2/F = kQq/16r² ÷ kQq/r²
F2/F = kQq/16r² × r²/kQq
F2/F = 1/16
F2 = 1/16 F
Therefore the coulombic force between two ions is reduced to<u> 1/16 </u>of its original strength when the distance between them is quadrupled.
A low-luminosity star has a small and narrow <u>habitable zone</u>, whereas a high-luminosity star has a large and wide one.
<h3>What is luminosity of a star?</h3>
The radiant power emitted by a light-emitting item over time is measured as luminosity, which is an absolute measure of radiated electromagnetic power (light).
The total quantity of electromagnetic energy released per unit of time by a star, galaxy, or other celestial object is referred to as luminosity in astronomy.
Learn more about low-luminosity star:
brainly.com/question/13912549
#SPJ4