Complete question:
A 200 g load attached to a horizontal spring moves in simple harmonic motion with a period of 0.410 s. The total mechanical energy of the spring–load system is 2.00 J. Find
(a) the force constant of the spring and (b) the amplitude of the motion.
Answer:
(a) the force constant of the spring = 47 N/m
(b) the amplitude of the motion = 0.292 m
Explanation:
Given;
mass of the spring, m = 200g = 0.2 kg
period of oscillation, T = 0.410 s
total mechanical energy of the spring, E = 2 J
The angular speed is calculated as follows;

(a) the force constant of the spring

(b) the amplitude of the motion
E = ¹/₂kA²
2E = kA²
A² = 2E/k

Answer:........... .. .....
Hello. The answer to your question is ''<span>hypothesis''. I hope this helps! </span>
Answer:
The wavelength in miles is <u>0.1165 miles</u>.
Explanation:
Given:
Wavelength of the radio wave is 187.37 m.
Now, the wavelength is given in meters.
We need to convert the wavelength from meters to miles.
In order to convert meters to miles, we have to use their conversion factor.
We know that,
1 meter = 
Therefore, the conversion factor is given as:

So, the wavelength in miles is given as:

Hence, the wavelength in miles is 0.1165 miles.