Explanation:
Equation for energy balance will be as follows.


Hence, 
Therefore, we will calculate the final temperature as follows.

= 868.03 R
Now, we will calculate the mass as follows.
m = 
= 
= 1.031 lbm
Hence,

Putting the values into the above equation as follows.


= 655.2 Btu
Thus, we can conclude that work done by paddle wheel is 655.2 Btu.
Answer:
Explanation:
Magnets are of two major forms namely the permanent magnet and the temporary magnets. Temporary magnets magnetizes and demagnetize easily while permanent magnets does not magnetizes and demagnetize easily.
This permanents magnets are applicable in loudspeakers, generators, induction motor etc.
To increase the
The following will tend to increase the magnetic force acting on the rotor in an induction motor.
1. Increasing the strength of the bar magnet. Increase in strength of the magnet will lead to increase in the magnetic force acting on the rotor.
2. Increase in the magnetic line of force also known as the magnetic flux around the magnet will also increase the magnetic force acting on the rotor.
Potential Energy= 24m * 14kg * 9.8N/kg = 3292.8J
Answer:
The mutual speed immediately after the touchdown-saving tackle is 4.80 m/s
Explanation:
Given that,
Mass of halfback = 98 kg
Speed of halfback= 4.2 m/s
Mass of corner back = 85 kg
Speed of corner back = 5.5 m/s
We need to calculate their mutual speed immediately after the touchdown-saving tackle
Using conservation of momentum

Where,
= mass of halfback
=mass of corner back
= velocity of halfback
= velocity of corner back
Put the value into the formula



Hence, The mutual speed immediately after the touchdown-saving tackle is 4.80 m/s
Point a because point a is the highest at potential energy converting into the highest kinetic energy.