1) In the reference frame of one electron: 0.38c
To find the relative velocity of one electron with respect to the other, we must use the following formula:

where
u is the velocity of one electron
v is the velocity of the second electron
c is the speed of light
In this problem:
u = 0.2c
v = -0.2c (since the second electron is moving towards the first one, so in the opposite direction)
Substituting, we find:

2) In the reference frame of the laboratory: -0.2c and +0.2c
In this case, there is no calculation to be done. In fact, we are already given the speed of the two electrons; we are also told that they travel in opposite direction, so their velocities are
+0.2c
-0.2c
Answer:
Evaporative Water Loss = 2 kg
Explanation:
According to the given condition, the water entering the body must be equal to the water leaving the body. Therefore,
Water Entering the Body = Water Leaving the Body
Feed Water + Drinking Water + Metabolic Water = Urine Water + Evaporative Water Loss
using the given values:
1 kg + 5 kg + 0.5 kg = 4.5 kg + Evaporative Water Loss
Evaporative Water Loss = 1 kg + 5 kg + 0.5 kg - 4.5 kg
<u>Evaporative Water Loss = 2 kg</u>
Molecules and polyatomic ions are formed by covalent bonds.
That the player must produce an arrangement in which each suit is ordered from ace to king
Answer:
(c) no different than on a low-pressure day.
Explanation:
The force acting on the ship when it floats in water is the buoyant force. According to the Archimedes' principle: The magnitude of buoyant force acting on the body of the object is equal to the volume displaced by the object.
Thus, Buoyant forces are a volume phenomenon and is determined by the volume of the fluid displaced.
<u>Whether it is a high pressure day or a low pressure day, the level of the floating ship is unaffected because the increased or decreased pressure at the all the points of the water and the ship and there will be no change in the volume of the water displaced by the ship.</u>