Answer:
the work againts gravity is zero (0)
Explanation:
This is because the work is always done, by a force that acts parallel in the direction of the displacement of the body.
In this case, the gravity and the weight of the bag is not acting in the direction of the displacement, therefore there is no work done.
Answer:
The location of the shear center o is 0.033 or 33 m
Explanation:
Solution
Recall that,
The moment of inertia of the section is = I = 0.05 * 0.4 ^3 /12 + 0.005 * 0.2 ^3/12
= 30 * 10 ^ ⁻⁶ m⁴
Now,
The first moment of inertia is
Q =ῩA = [ (0.1 -x) + x/2] (0.005 * x)
= 0.5x * 10 ^⁻³ - 2.5 x * 10⁻³ x²
Thus,
The shear flow is,
q = VQ/I
so,
P = (0.5x * 10 ^⁻³ - 2.5 x * 10⁻³ x²)/ 30 * 10 ^⁻⁶
P = (16.67 x - 83. 33 x²)
The shear force resisted by the shorter web becomes
Vw,₂ = 2∫ = ₀.₁ and ₀ = P (16.67 x - 83. 33 x²) dx = 0.11x
Then,
We take the moment at a point A
∑Mₐ = 0
- ( p * e)- (Vw₂ * 0.3 ) = 0
e = 0.11 p * 0.3/p
which gives us 0.033 m
= 33 m
Therefore the location of the shear center o is 0.033 or 33 m
Note: Kindly find an attached diagram to the question given above as part of the explanation solved with it.
The equation for this is very simple you add then you subtract then you get the answer then you divide then it all works out for you
Answer:
I know someone anwsered but it would be 400M
Explanation:
i initial velocity (u)=10m/s
acceleration (a)=0
time taken (t) =40s
then distance (s)=u t +1/2 a t^2
s= u t +0 (as a is 0)
s= 10 x 40
s= 400M