Given that,
bug speed, v= 0.85 m/s
time, t =42 s
Final position of bug on meter stick was 27 cm
Starting position of bug on meter stick = ?
Since we know that,
s = vt
s= 0.85*42 = 35.7 cm
this is the distance covered by bug in the given time and velocity.
since the bug is moving in negative direction, starting point will be:
27.0 cm+ 35.7 cm = 62.7 cm
The bugs starting position on meter stick was 62.7 cm.
Answer:
0.025V + (0.000218V/s³) t³
Explanation:
Parameters given:
Radius of coil, r = 3.85 cm = 0.0385 m
Number of turns, N = 450
Magnetic field, B = ( 1.20×10^(−2) T/s )t + (2.60×10^(−5) T/s4 )t^4.
The magnitude of Induced EMF is given as:
E = N * A * dB/dt
Where A is the area of the coil
First, we differentiate the magnetic field with respect to time:
dB/dt = 0.012 + 0.000104t³
Therefore, EMF will be:
E = 450 * 3.142 * (0.012 + 0.000104t³)
E = 2.096(0.012 + 0.000104t³)
E = 0.025V + (0.000218V/s³)t³
Well, collinear points are points in same line,
that is a straight line is formed by connecting them,
here the line segment mE has point A,G,C,E so all these are collinear..
so, option c) E will be answer
hope it helped
Earthquakes and volcanoes most commonly occur around plate boundaries because of the movement from the plate boundaries. The interactions between the plates by moving under, upon, or sliding against other boundaries may cause earthquakes and volcanoes.
Answer:
v=0.816 m/s
Explanation:
The force of the spring and the motion of the block are in equilibrium so without any force of friction the motion is


First determinate the constant of the spring that produce the kinetic energy of the bloc



Now the motion with the force of friction in the kinetic


Resolve to v


