The answer to the questions of volumes are given as follows
a) 
b) 
c)
d)
Generally, the questions are mathematically solved below

a) x-axis
if $y=4, x=16, x=0$
Using disk method




b) line y=4
if x=0, y=0 ;

Using shell method


![v=2 \pi\left[\frac{4 y^{3}}{3}-\frac{y^{4}}{4}\right]_{0}^{4} \\](https://tex.z-dn.net/?f=v%3D2%20%5Cpi%5Cleft%5B%5Cfrac%7B4%20y%5E%7B3%7D%7D%7B3%7D-%5Cfrac%7By%5E%7B4%7D%7D%7B4%7D%5Cright%5D_%7B0%7D%5E%7B4%7D%20%5C%5C)
![v=\frac{2 \pi}{12}[1024-768] \\](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B2%20%5Cpi%7D%7B12%7D%5B1024-768%5D%20%5C%5C)


c) y-axis
0 ≤ y ≤ 4
x=y^2
Using disk method
volume



d) line x=-1
y=√x, y=4, x=0
0 ≤ x ≤ 6
Using shell method
volume is


![V=2 \pi\left[\frac{x^{3 / 2}}{3 / 2}+\frac{x^{5 / 2}}{5 / 2}\right]_{0}^{16} \\](https://tex.z-dn.net/?f=V%3D2%20%5Cpi%5Cleft%5B%5Cfrac%7Bx%5E%7B3%20%2F%202%7D%7D%7B3%20%2F%202%7D%2B%5Cfrac%7Bx%5E%7B5%20%2F%202%7D%7D%7B5%20%2F%202%7D%5Cright%5D_%7B0%7D%5E%7B16%7D%20%5C%5C)
![V=2 \pi\left[2 / 3 \cdot\left(4^{2}\right)^{3 / 2}+2 / 5\left(4^{2}\right)^{5 / 2}\right] \\](https://tex.z-dn.net/?f=V%3D2%20%5Cpi%5Cleft%5B2%20%2F%203%20%5Ccdot%5Cleft%284%5E%7B2%7D%5Cright%29%5E%7B3%20%2F%202%7D%2B2%20%2F%205%5Cleft%284%5E%7B2%7D%5Cright%29%5E%7B5%20%2F%202%7D%5Cright%5D%20%5C%5C)





Read more about volumes
brainly.com/question/1578538
#SPJ1
H-8=2. The only solution to that equation is H=10. Any other number isn't.
22 because i am in college and i know what i am doing
23.068 I’m guessing that’s what you mean, since there is a 9 to the right of 7 the 7 gets rounded up. Hope this helps!
<h2>
Answer:</h2>
<h3>
<em>x=45degrees</em></h3>
<h2>
Step-by-step explanation:</h2>
Let the angle to be solved be x
Let the supplement/compliment by y
x+y=90 Complimentary angles add up to 90 degrees.
x+3y=180 Supplementary angles add up to 180 degrees, the other angle is thrice the other compliment.
Evaluating this as a system:
x+y=90 Isolate x:
x=90−y Input into the other equation:
(90−y)+3y=180 Combine like terms, isolate y and its coefficients:
2y=90 Isolate y
y=45 Input into the first equation:
x+45=90 Isolate x:
x=45degrees