1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
5

A sporting goods store is having a 15% off sale on all items. Which functions can be used to find the sale price of an item that

has an original price of x? You may choose more than one correct answer.
ƒ(x) = x - .15x
Sale = Original - 15
ƒ(x) = 1.15x
Sale = Original - .15(Original)
y = .85x
Mathematics
1 answer:
asambeis [7]3 years ago
3 0
The answers are: 
<span>ƒ(x) = x - .15x
</span><span>Sale = Original - .15(Original)
</span><span>y = .85x

Let sale price be f(x) and x be the original price. Discount was 15% = 0.15
f(x) = x - 0.15x

If f(x) is sale and x is the original, then:
</span><span>Sale = Original - .15(Original)

Let sale price be y and original price x:
y = x - 0.15x
y = 1 * x - 0.15 * x
y = (1 - 0.15) * x
y = 0.85x</span>
You might be interested in
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
Evaluate.
ohaa [14]

Step-by-step explanation:

\frac{9.2 \times  {10}^{ - 8} }{2.3 \times  {10}^{3} }  \\  = 4.0 \times  {10}^{ - 11}

8 0
2 years ago
Which represents the solution set of 5(x+5)&lt;85?
klasskru [66]
Isolate the VARIABLE by dividing each side by FACTROS that don't contain the VARIABLE .
YOUR answer is <span>x<12


</span>
8 0
3 years ago
Read 2 more answers
the sum of three consecutive terms in an arithmetic sequence is 30, and their product is 360. Find the tree terms
IRISSAK [1]
Hello here is a solution : 

3 0
3 years ago
- Mary earns an hourly wilge of $13 plus a $90
SIZIF [17.4K]

Answer:

39 hours

Step-by-step explanation:

Mary earns an hourly wage of $13

plus a $90 bonus.

Her total paycheck shows she received $597

Subtracting the bonus we get;

$597 - $90 = $507

1 hour -> she gets $13

how many hours will she get $507

Cross multiplying gives;

\frac{507}{13}  * 1 = 39 hours

8 0
3 years ago
Read 2 more answers
Other questions:
  • V= <img src="https://tex.z-dn.net/?f=v%3D%20%5Cpi%20r%20%5E%7B2%7D%20h%20%20for%20%20%202%20" id="TexFormula1" title="v= \pi r ^
    14·1 answer
  • An arc in a circle with a radius of 4 inches is subtended by a central angle that measures 110°. Explain how to find the arc len
    14·2 answers
  • write an equation in standard form for a line that is (a) parallel (b) to the line with an equation of y=3x-5 that passes throug
    12·1 answer
  • In which quadrant is the point (2,-3) located?
    8·2 answers
  • How do you simplify the square root of 180 and how do you know that it is in simplest form?
    10·1 answer
  • Oleg, Sasha, and Dima shared 600 toys. Sasha had twice as many toys as Oleg. Dima had 40 more toys than Oleg. How many toys did
    12·1 answer
  • Help please!ill give brainliest
    11·1 answer
  • If x:14= 1:7, find x. P​
    7·2 answers
  • 7. a) If (4ax + 6ay) sq. unit is the area of a rectangle, find the length and breadth of the rectangle.
    14·1 answer
  • 2. Find the sum of the digits of each multiple of 9 below.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!