1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
5

A sporting goods store is having a 15% off sale on all items. Which functions can be used to find the sale price of an item that

has an original price of x? You may choose more than one correct answer.
ƒ(x) = x - .15x
Sale = Original - 15
ƒ(x) = 1.15x
Sale = Original - .15(Original)
y = .85x
Mathematics
1 answer:
asambeis [7]3 years ago
3 0
The answers are: 
<span>ƒ(x) = x - .15x
</span><span>Sale = Original - .15(Original)
</span><span>y = .85x

Let sale price be f(x) and x be the original price. Discount was 15% = 0.15
f(x) = x - 0.15x

If f(x) is sale and x is the original, then:
</span><span>Sale = Original - .15(Original)

Let sale price be y and original price x:
y = x - 0.15x
y = 1 * x - 0.15 * x
y = (1 - 0.15) * x
y = 0.85x</span>
You might be interested in
Consider the vector field f(x,y,z)=(2z+3y)i+(3z+3x)j+(3y+2x)kf(x,y,z)=(2z+3y)i+(3z+3x)j+(3y+2x)k.
natima [27]
\dfrac{\partial f}{\partial x}=2z+3y\implies f(x,y,z)=2xz+3xy+g(y,z)

\dfrac{\partial f}{\partial y}=3x+\dfrac{\partial g}{\partial y}=3z+3x
\dfrac{\partial g}{\partial y}=3z\implies g(y,z)=3yz+h(z)
\implies f(x,y,z)=3xz+3xy+3yz+h(z)


\dfrac{\partial f}{\partial z}=3x+3y+\dfrac{\mathrm dh}{\mathrm dz}=3y+2x
\dfrac{\mathrm dh}{\mathrm dz}=-x

But we assume h is a function of z alone, so there is no solution for h and hence no scalar function f such that \nabla f=\mathbf f.
6 0
2 years ago
LABEL YOUR ANSWERS PART A and PART B
dmitriy555 [2]

Answer:

part A 6 out comes.

Step-by-step explanation:

for part A (C,F) (C,P) (C,T) (F,P) (F,T) (P,T)

5 0
3 years ago
Read 2 more answers
What is the answer to (3 × 144) × 199​
vlada-n [284]

Answer:

The answer will be 85,968

3 0
2 years ago
Read 2 more answers
1. an alloy contains zinc and copper in the ratio of 7:9 find weight of copper of it had 31.5 kgs of zinc.
m_a_m_a [10]

Answer:

Step-by-step explanation:

Question (1). An alloy contains zinc and copper in the ratio of 7 : 9.

If the weight of an alloy = x kgs

Then weight of copper = \frac{9}{7+9}\times (x)

                                      = \frac{9}{16}\times (x)

And the weight of zinc = \frac{7}{7+9}\times (x)

                                      = \frac{7}{16}\times (x)

If the weight of zinc = 31.5 kg

31.5 = \frac{7}{16}\times (x)

x = \frac{16\times 31.5}{7}

x = 72 kgs

Therefore, weight of copper = \frac{9}{16}\times (72)

                                               = 40.5 kgs

2). i). 2 : 3 = \frac{2}{3}

        4 : 5 = \frac{4}{5}

Now we will equalize the denominators of each fraction to compare the ratios.

\frac{2}{3}\times \frac{5}{5} = \frac{10}{15}

\frac{4}{5}\times \frac{3}{3}=\frac{12}{15}

Since, \frac{12}{15}>\frac{10}{15}

Therefore, 4 : 5 > 2 : 3

ii). 11 : 19 = \frac{11}{19}

    19 : 21 = \frac{19}{21}

By equalizing denominators of the given fractions,

\frac{11}{19}\times \frac{21}{21}=\frac{231}{399}

And \frac{19}{21}\times \frac{19}{19}=\frac{361}{399}

Since, \frac{361}{399}>\frac{231}{399}

Therefore, 19 : 21 > 11 : 19

iii). \frac{1}{2}:\frac{1}{3}=\frac{1}{2}\times \frac{3}{1}

             =\frac{3}{2}

     \frac{1}{3}:\frac{1}{4}=\frac{1}{3}\times \frac{4}{1}

              = \frac{4}{3}

Now we equalize the denominators of the fractions,

\frac{3}{2}\times \frac{3}{3}=\frac{9}{6}

And \frac{4}{3}\times \frac{2}{2}=\frac{8}{6}

Since \frac{9}{6}>\frac{8}{6}

Therefore, \frac{1}{2}:\frac{1}{3}>\frac{1}{3}:\frac{1}{4} will be the answer.

IV). 1\frac{1}{5}:1\frac{1}{3}=\frac{6}{5}:\frac{4}{3}

                  =\frac{6}{5}\times \frac{3}{4}

                  =\frac{18}{20}

                  =\frac{9}{10}

Similarly, \frac{2}{5}:\frac{3}{2}=\frac{2}{5}\times \frac{2}{3}

                       =\frac{4}{15}                  

By equalizing the denominators,

\frac{9}{10}\times \frac{30}{30}=\frac{270}{300}

Similarly, \frac{4}{15}\times \frac{20}{20}=\frac{80}{300}

Since \frac{270}{300}>\frac{80}{300}

Therefore, 1\frac{1}{5}:1\frac{1}{3}>\frac{2}{5}:\frac{3}{2}

V). If a : b = 6 : 5

     \frac{a}{b}=\frac{6}{5}

        =\frac{6}{5}\times \frac{2}{2}

        =\frac{12}{10}

  And b : c = 10 : 9

  \frac{b}{c}=\frac{10}{9}

 Since a : b = 12 : 10

 And b : c = 10 : 9

 Since b = 10 is common in both the ratios,

 Therefore, combined form of the ratios will be,

 a : b : c = 12 : 10 : 9

7 0
3 years ago
Which equation can be used to find the length of Line segment A C? Triangle A B C is shown. Angle A C B is 90 degrees and angle
taurus [48]

<u><em>Answer:</em></u>

AC = 10sin(40°)

<u><em>Explanation:</em></u>

The diagram representing the question is shown in the attached image

Since the given triangle is a right-angled triangle, we can apply the special trig functions

<u>These functions are as follows:</u>

sin(θ) = opposite / hypotenuse

cos(θ) = adjacent / hypotenuse

tan(θ) = opposite / adjacent

<u>Now, in the given diagram:</u>

θ = 40°

AC is the side opposite to θ

AB = 10 in is the hypotenuse

<u>Based on these givens</u>, we will use the sin(θ) function

<u>Therefore:</u>

sin(40) = \frac{AC}{10}\\ \\AC = 10sin(40)

5 0
3 years ago
Read 2 more answers
Other questions:
  • HELP! I am REALLY struggling!
    14·1 answer
  • Pablo bought a new laptop for $864. He is paying it off over
    11·1 answer
  • 56:31
    15·1 answer
  • Where would you put the decimal point in 201 x 15 to make it equal 30.15<br><br> 201 x 15 = 30.15
    5·2 answers
  • T
    8·1 answer
  • In AHIJ, i = 99 inches, j = 99 inches and ZH=9°. Find the length of h, to the nearest<br> inch.
    8·2 answers
  • Please help (again sorry for posting so much)
    5·2 answers
  • Si la gráfica de coseno es negativa tiene forma de montaña?
    9·1 answer
  • HOW DO I DO THIS AND WHERE CAN I LEARN MORE
    12·1 answer
  • How many half cubes are needed to fill in the gap of the box
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!