1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blondinia [14]
3 years ago
11

Simultaneous equations 5x+y=28 x+y=2

Mathematics
2 answers:
Korolek [52]3 years ago
8 0

Answer:

\boxed{x=6.5} \\ \boxed{y=-4.5}

Step-by-step explanation:

5x + y = 28

x + y = 2

Subtract both equations. (eliminating y variable)

4x + 0 = 26

4x = 26

Divide both sides by 4.

x = \frac{26}{4}

x = 6.5

Plug x as 6.5 in the second equation and solve for y.

6.5 + y = 2

Subtract 6.5 on both sides.

6.5 - 6.5 + y = 2 - 6.5

y = -4.5

ludmilkaskok [199]3 years ago
5 0

Answer:

<h2>( \frac{13}{2}  \:,  -  \frac{9}{2} )</h2>

Step-by-step explanation:

5x + y = 28

x + y = 8

Solve the equation for y by moving 'x' to R.H.S and changing its sign

5x + y = 28

y = 2 - x

Substitute the given value of y into the equation 5x + y = 28

5x + 2 - x = 28

Solve the equation for x

Collect like terms

4x + 2 = 28

Move constant to R.H.S and change its sign

4x = 28 - 2

Subtract the numbers

4x  = 26

Divide both sides of the equation by 4

\frac{4x}{4}  =  \frac{26}{4}

Calculate

x =  \frac{26}{4}

Reduce the numbers with 2

x =  \frac{13}{2}

Now, substitute the given value of x into the equation y = 2 - x

y = 2 -  \frac{13}{2}

Solve the equation for y

y =  -  \frac{9}{2}

The possible solution of the system is the ordered pair ( x , y )

<h2>(x \: y) = ( \frac{13}{2} , \:  -  \frac{9}{2} )</h2>

-------------------------------------------------------------

Let's check if the given ordered pair is the solution of the system of equation:

plug the value of x and y in both equation

5 \times  \frac{13}{2}  -  \frac{9}{2}  = 28

\frac{13}{2}  -  \frac{9}{2}  = 2

Simplify the equalities

28 = 28

2 = 2

Since , all of the equalities are true, the ordered pair is the solution of the system.

(x  \:, y \: ) = ( \frac{13}{2}  \: , -  \frac{9}{2})

Hope this helps....

Best regards!!

You might be interested in
Write seventeen thousand and one hundred six thousandths in standard form.
ICE Princess25 [194]


When you see the word 'and' that's where you have to put the decimal when writing a number in standard form.

 So you would write this number as 17,000.106

Hope this helps. :)

3 0
2 years ago
Read 2 more answers
This . 9th and 10 pleasee solve thesee ?
kykrilka [37]
9 is 9600 cause if you divide 48 by 5 you get 9.6 then times 9.6 times 1000 you get 9600
i cant solve number 10 its really blurry and hard to see
5 0
3 years ago
Help Me??????????????
tekilochka [14]
Statistical questions: A, C, E, because they all talk about students, where B and D talk about adults and people in general. Frank just wants to know about students.
5 0
3 years ago
Please I’m confused…
Anika [276]

Answer:

I believe it should be

4 : 1 : 200

Step-by-step explanation:

4 0
2 years ago
Help. <br>Please its urgent show workings.<br>​
laiz [17]

Answer:

see explanation

Step-by-step explanation:

There are 2 possible approaches to differentiating these.

Expand the factors and differentiate term by term, or

Use the product rule for differentiation.

I feel they are looking for use of product rule.

Given

y = f(x). g(x) , then

\frac{dy}{dx} = f(x).g'(x) + g(x).f'(x) ← product rule

(a)

y = (2x - 1)(x + 4)²

f(x) = 2x - 1 ⇒ f'(x) = 2

g(x) = (x + 4)²

g'(x) = 2(x + 4) × \frac{d}{dx} (x + 4) ← chain rule

       = 2(x + 4) × 1

        = 2(x + 4)

Then

\frac{dy}{dx} = (2x - 1). 2(x + 4) + (x + 4)². 2

    = 2(2x - 1)(x + 4) + 2(x + 4)² ← factor out 2(x + 4) from each term

    = 2(x + 4) (2x - 1 + x + 4)

    = 2(x + 4)(3x + 3) ← factor out 3

    = 6(x + 4)(x + 1)

--------------------------------------------------------------------------

(b)

y =  x(x² - 1)³

f(x) = x ⇒ f'(x) = 1

g(x) = (x² - 1)³

g'(x) = 3(x² - 1)² × \frac{d}{dx} (x² - 1) ← chain rule

        = 3(x² - 1)² × 2x

        = 6x(x² - 1)²

Then

\frac{dy}{dx} = x. 6x(x² - 1)² + (x² - 1)³. 1

    = 6x²(x² - 1)² + (x² - 1)³ ← factor out (x² - 1)²

    = (x² - 1)² (6x² + x² - 1)

     = (x² - 1)²(7x² - 1)

----------------------------------------------------------------------

(c)

y = (x² - 1)(x³ + 1)

f(x) = x² - 1 ⇒ f'(x) = 2x

g(x) = (x³ + 1) ⇒ g'(x) = 3x²

Then

\frac{dy}{dx} = (x² - 1). 3x² + (x³ + 1), 2x

   = 3x²(x² - 1) + 2x(x³ + 1) ← factor out x

   = x[3x(x² - 1) + 2(x³ + 1) ]

   = x(3x³ - 3x + 2x³ + 2)

   = x(5x³ - 3x + 2) ← distribute

    = 5x^{4} - 3x² + 2x

--------------------------------------------------------------------

(d)

y = 3x³(x² + 4)²

f(x) = 3x³ ⇒ f'(x) = 9x²

g(x) = (x² + 4)²

g'(x) = 2(x² + 4) × \frac{d}{dx}(x² + 4) ← chain rule

       = 2(x² + 4) × 2x

       = 4x(x² + 4)

Then

\frac{dy}{dx} = 3x³. 4x(x² + 4) + (x² + 4)². 9x²

    = 12x^{4}(x² + 4) + 9x²(x² + 4)² ← factor out 3x²(x² + 4)

    = 3x²(x² + 4) [ 4x² + 3(x² + 4) ]

    = 3x²(x² + 4)(4x² + 3x² + 12)

    = 3x²(x² + 4)(7x² + 12)

5 0
2 years ago
Other questions:
  • Explain the different ways it it possible to add 2 rational numbers and get a negative number
    15·1 answer
  • Megan hiked 15.12 miles in 6.3 hours. If Megan hiked the same number of miles each hour, how many miles did she hike each hour?
    13·1 answer
  • Dustin is standing at the edge of a vertical cliff, 40 meters high, which overlooks a clear lake. He spots a fluffy white cloud
    9·1 answer
  • If the shelter has 5 times as many cars as dogs if the shelter has a total of the 18 Dogs and cats how many dogs does the shelte
    12·1 answer
  • What is the answer to 2,593 divided by 21
    9·1 answer
  • Help me plzzz with my hw
    6·1 answer
  • Helppppppp pls this is due in a few hours
    6·1 answer
  • ✓2(✓3+✓5)-√6-✓10<br>rationalize​
    12·2 answers
  • A sample of 14001400 computer chips revealed that 311% of the chips do not fail in the first 10001000 hours of their use. The co
    15·1 answer
  • use SSS to explain why the triangles in each pair are congruent. pls don’t be hat person and steal points
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!