Anything that takes up space
Answer:
Potential targets:
1- DNA methyltransferases
2- Chromatin modifiers such as histone acetyltransferases, histone deacetylases, histone methyltransferases, etc.
3- Components of the RNA interference (RNAi) machinery such as Dicer, Argonaute, etc.
Explanation:
Epigenetics can be defined as the study of any heritable change in the phenotype that does not involve modifications in the DNA sequence. Epigenetic mechanisms can be classified into three major types: 1-DNA methylation, 2-histone modifications (e.g., acetylation, methylation, phosphorylation, etc), and 3-regulatory non-coding RNAs (e.g., miRNAs, lncRNAs, siRNAs, etc) that modulate target gene expression via the RNA interference pathway. There are different types of proteins that are involved in these complex epigenetic mechanisms, and those cited above represent only some examples that can be used as therapeutic targets.
Answer:
Explanation:
1. The beam emitted travels along a straight path and it is divergent in nature. It has its radius increasing progressively as the distance away from the source of light increases.
2. It would be observed that the region where the bulb is positioned has denser light beam. This gets fainter towards the edges of the beam and away from the bulb.
During cellular respiration, which is a part of metabolism, one molecule of glucose produces a maximum yield of 38 molecules of ATP (adenosine triphosphate). ATP is the energy form that cells use to function and has also been often called the "currency" of the cells.
The whole process begins with breakdown of food by the digestive system right down to their monomer units. Carbohydrates are broken down into glucose, which is carried by blood to all cells of the body.
Each cell takes in glucose and breaks it down through the respiration process that begins with glycolysis in the cytoplasm which yields 2 ATP molecules, then onward into the mitochondria of the cell where Krebs cycle and electron transport chain processes generate 34 to 36 more molecules of ATP.