Answer:
3/4, 6/8
Step-by-step explanation:
12/4 is 3. 16/4 is 4, repeat for the other one with the number 3
4 9/20 that is the mixed number of 4.45
Answer:
=−14x+18
Step-by-step explanation:
happy to help ya :)
The new parking lot must hold twice as many cars as the previous parking lot. The previous parking lot could hold 56 cars. So this means the new parking lot must hold 2 x 56 = 112 cars
Let y represent the number of cars in each row, and x be the number of total rows in the parking lot. Since the number of cars in each row must be 6 less than the number of rows, we can write the equation as:
y = x - 6 (1)
The product of cars in each row and the number of rows will give the total number of cars. So we can write the equation as:
xy = 112 (2)
Using the above two equations, the civil engineer can find the number of rows he should include in the new parking lot.
Using the value of y from equation 1 to 2, we get:
x(x - 6) = 112 (3)
This equation is only in terms of x, i.e. the number of rows and can be directly solved to find the number of rows that must in new parking lot.
Answer:



Step-by-step explanation:
<u>Optimizing With Derivatives
</u>
The procedure to optimize a function (find its maximum or minimum) consists in
:
- Produce a function which depends on only one variable
- Compute the first derivative and set it equal to 0
- Find the values for the variable, called critical points
- Compute the second derivative
- Evaluate the second derivative in the critical points. If it results positive, the critical point is a minimum, if it's negative, the critical point is a maximum
We know a cylinder has a volume of 4
. The volume of a cylinder is given by

Equating it to 4

Let's solve for h

A cylinder with an open-top has only one circle as the shape of the lid and has a lateral area computed as a rectangle of height h and base equal to the length of a circle. Thus, the total area of the material to make the cylinder is

Replacing the formula of h

Simplifying

We have the function of the area in terms of one variable. Now we compute the first derivative and equal it to zero

Rearranging

Solving for r

![\displaystyle r=\sqrt[3]{\frac{4}{\pi }}\approx 1.084\ feet](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%7D%7B%5Cpi%20%7D%7D%5Capprox%201.084%5C%20feet)
Computing h

We can see the height and the radius are of the same size. We check if the critical point is a maximum or a minimum by computing the second derivative

We can see it will be always positive regardless of the value of r (assumed positive too), so the critical point is a minimum.
The minimum area is

